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The ideas introduced by Coltman and Benade are developed into a quantitative formalism for 
treating the oscillatory behavior of an air column in nonlinear interaction with an air jet, as in an 
organ flue pipe or a flute. Explicit solutions are given for the case when the pipe has only two 
resonances and the nonlinearity is described up Io cubic terms. The results of illustrative calculations 
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INTRODUCTION 

The scaling of ranks of organ flue pipes to produce a 
coherent, characteristic, and tonally balanced ensemble 
is a problem which has confronted organ builders for 
many centuries. The solutions which they developed were 
initially empirical and the more satisfactory ones were 
then refined into scaling laws of which •eve.ral exist. 1 
The precise relationships between attack, intensity, and 
harmonic development of the pipes which are necessary 
to constitute a satisfactory rank design are still not well 
understood, except in a qualitative way, and a great 
deal depends upon the experience and skill of the design- 
er and voicer. 

When we try to attack this problem we find that many 
things about the behavior of a single flue pipe are not 
well understood either. Even leaving aside the musical- 
ly most important attack transient, the way in which the 
spectrum of the sound radiated by a pipe depends upon 
its scale (length to diameter ratio) and upon the geome- 
try of mouth and jet is known only in qualitative outline. 

Much of the reason for this lack of detailed under- 

standing comes from the fact that the problem is essen- 
tially nonlinear. The linear theory has been explored 
by many workers, particularly ior the related cases of 
the flute 2's and the clarinet. +-6 (References 5 and 6, 
which are books, give copious additional references.) 
Unfortunately, the linear theory gives information pri- 
marily about the fre4uency of the fundamental and tells 
us very little about the relative amplitudes of the upper 
partials. 

Almost the only studies of nonlinear effects in pipes 
have been those of Benade. ?'a He proposed a treatment 
in which the normal resonance modes of the air column 

within the pipe are coupled together through nonlinear 
interaction with the air jet (or reed in the case of reed 
pipes). In principle, provided the interaction law and 
the separate characteristics of the pipe and jet are 
known, this approach allows calculation of the amplitudes 
of all the harmonics of the oscillation. Even without 

such a calculation, Benade has shown that these consid- 
erations a/low genera/predictions of the change with 
amplitude of harmonic content and of frequency to be 
n•de. 

The purpose of the present paper is to develop in 
quantitative form the nonlinear interaction theory put 
forward by Benade. In subsequent papers, we hope to 

present the results of an experimental study of some of 
the predictions of the theory and finally to relate our 
conclusions to the initial problem of the tonal design of 
a rank of flue pipes. We shall see that the results also 
have relevance to tone development in the flute. 

I, THE JET AS AN EXCITATION MECHANISM 

The interaction between sound waves and an air jet 
issuing from an orifice has been studied in some detail 
by Brown? He showed that interaction takes place al- 
most exclusively at the point where the jet emerges 
from the orifice and that the interaction induces the for- 

mation of vortices which progress along the jet with a 
velocity rather less than thai of the fluid. 

Coltman s has carried out detailed measurements of 

the acoustic impedance of such a jet when it travels a 
relatively short distance and then impinges upon an edge 
which'is part of the embouchure hole of a flute. In this 
study, he was able to measure the acoustic impedance 
at a given frequency as a function of jet velocity and 
found a behavior of the sort illustrated in Fig. 1. The 
real part of the impedance was negative (corresponding 
to a supply of acoustic energy to the tube .resonator) over 
several discrete ranges of airjet velocity. He pointed 
out that only the outermost loop of the spiral is in fact 
used in practical flute playing and that, unless the ve-- 
locity is such as to make the impedance .exactly real, its 

reactive par• will cause a correction to the natural tube 
resonance, making the sounding tone either sharp or 
flat. 

For our present purposes, we require an approximate 
treatment of the acoustic impedance of such a jet (in 
this case for an organ pipe rather than a flute) as a func= 
tion of frequency. It is, unfortunately, out of the ques- 
tion to attempt any sort of complete solution. Rayleigh tø 
long ago gave attention to this problem and it has also 
been studied more recently by Cremer and Ising tt and 
by Powell. 'a The behavior of the jet is both nonlinear 
and dispers'.tve, but we shall concentrate, for the mo= 
merit, on a linear approximation and simplify the dis= 
cussion as' much as we can. 

Suppose that inside the organ pipe there is an acoustic 
disturbance with angular frequency •o so that at time t 
the acoustic particle veloc{ty out of the pipe mouth near 
the jet orifice is vexp(ia•t). Following the work of 
Brown g and of Coltman, $ we know that this acoustic ve- 
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FIG. 1. Acoustic impedance .Z=R +iX of the blowing jet of a 
flute as measured by Coltman a for a particular jet configuration. 
The impedance is given in units of the characteristic imped- 
ance of the tube, the parameter on the curve is the blowing 
pressure in inches of water, and the sounding frequency is 
440 Hz. 

locity interacts with the jet and provokes a disturbance 
near the orifice which is essentially wave-like in char- 
acter and which travels along the jet with a velocity u. 
Coltman's measurements show that u is about 0.4 times 

the fluid velocity in the jet but it also varies somewhat 
with frequency. In addition, over areasonably large 
frequency range, the amplitude of the jet disturbance in- 
creases with distance from the orifice. 9'n Taking all 
these effects into account, if the distance from the jet 
mouth to the pipe lip is d, then the jet disturbance 
reaches the lip after a time d/u. At the lip it generates 
a pressure. fluctuation, due to its blowing either into or 
out of the tube, whose magnitude by Bernoulli's theorem 
is proportional to the square of the jet velocity and hence 
to the pressure P in the blowing reservoir. 

In the linear approximation which we are using, the 
amplitude of the jet deflection is proportional to the 
acoustic disturbance vexp(i•0t)which causes it, though 
we cannot immediately say whether or not any phase 
change is involved in the interaction, nor exactly what 
the'coupling constant is. We can, however, absorb both 
these uncertainties into an effective interaction constant 

T to write's the pressure disturbance p generated when 
the jet strikes the pipe lip as 

p = - •Pvexp[iw(t- d/u)] . (1) 
The interaction constant T depends in detail upon the 

geometry of the jet, the pipe mouth, and the pipe lip and 
is in general complex, of the form yoexp( - i6). 

The acoustic impedance Z of the jet is now obtained 
by dividing this pressure fluctuation p by the acoustic 
volume velocity Avexp(io•t) out of the pipe mouth, where 
A is the effective area of the mouth opening. Thus, 

Z = - (•o P/A) exp[- i(wd/u + 6)] . (2) 

Measurements by Coltman a on flute jets led him to the 
conclusion that Z is real and negative, so that the flute 
tube sounds at its normal resonance frequency when 

the path length d of the jet is about half a wavelength. 
This implies a value close to •r for the phase lag 5 under 
the particular conditions chosen. The jet photographs 
of Cremer and Ising" suggest a similar result for the 
organ pipe jet which they studied. Finally, measure- 
ments by the present author, to be reported in detail in a 
later paper, indicate quite directly that 6 -•,r for both the 
fundamental and the next mode of a small organ pipe. 

It is fairly easy to identify the approximate origin of 
this phase shift. The interaction between the jet and the 
aeonstic current occurs at the jet aperture and the jet, 
if we assume it to be mass controlled, acquires a trans- 
verse velocity component which lags behind the forcing 
acoustic velocity by s/2. In the interaction between the 
jet and the pipe lip, there is a phase lag because the 
pressure is generated by a volume flow and the cross 
section of the jet is very much smaller than that of the 
pipe. In the limit of a very small jet and a very large 
pipe, the pressure should tend to follow the integral of 
the jet flux into the pipe and therefore lag behind the 
jet deflection by.•r/2. For a larger jet and smaller pipe, 
this ph•ise lag should be smaller. The total phase lag 
6, being the sum of these two contributions, should 
therefore approach s for a typical pipe geometry. The 
real situation is, of course, much more complex than 
this in its details. 

If we adopt the value s for •, then the impedance Z, 
given as a. function of blowing pressure by Eq. 2, is as 
shown in Fig. 2. Because of the unknown magnitudes in 
T0 and the dependence of A upon the particular physical 
system involved, the absolute magn}tude of the complex 
impedance Z is undetermined and we have simply drawn 
Fig. 2 to the same size as Fig. 1 so that a shape com- 
parison can be made. The parameter on the curve giv- 
ing blowing pressure (in inches of water for comparison 
with Coltman's data) is however calculated •irectly on 

ß the assumption of a jet length of ? ram, a sounding fre- 

FIG. 2. Acoustic impedance Z = R +iX of the blowing jet of an 
organ pipe as described by Eq. 2. As discussed in the text, 
the impedance units are undetermined but the figure has been 
drawn the same size as Fig. I for qualitative comparison. The 
parameter on the curve is the blowing pressure in inches of 
water assuming a jet length of 7 mm, a sounding frequency of 
440 Hz, and a wave-propagation velocity along the jet of 0.4 
times the jet air velocity, again for comparison with Fig. 1. 
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quency of 440 Hz, and a wave-propagation velocity along 
the jet of 0.4 times the airstream velocity, 'so that these 
figures are directly comparable with those of Fig. 1. 

From a comparison of the two figures it is clear that, 
apart from the unknown scale factor which can be ac- 

commodated in the parameter Y0, the semiquantitative 
agreement between theory and experiment is good. 
There are of course some minor discrepancies and 
there remains the possibility that ultimate experimental 
determination of Y0 might not give the expected agree- 
ment in magnitude, but with these reservations we can 
go on to use the more general form of Eq. 2, ,which in- 
cludes frequency dependence, as a basis for our further 
development of the theory. 

We shall not discuss the linear theory further except 
to point out that the condition for maintenance of a pipe 
oscillation near its fundamental resonance frequency w• 
is that the jet impedance Z(w•) at this frequency should 
have a negative real part of sufficient magnitude to over- 
come the pipe losses. I/the blowing pressure is in- 
creased or the jet length decreased, the real part of the 
jet impedance can be made negative for the second pipe 
resonance at frequency w2, but positive for the first 
resonance, and the pipe will overblow. This has been 
discussed in more detail by Coltman. a 

II. NONLINEAR JET EXCITATION 

The theory we have set out above is linear: the pres- 
sure disturbance p generated by the jet and given by 
Eq. i is simply related to the velocity disturbance 
vexp(iwt) through the impedance Z given by Eq. 2. In 
reality, the situation is much more complicated than 
this and, in particular, there is a maximum pressure 
that can be generated by the jet (when it is blowing en- 
tirely inside the lip), as well as a m•nimum pressure 
(when it is blowing entirely outside the lip). Thus, the 
static (p, v) relation for the jet looks rather like the full 
curve in Fig. 3, instead'of being simply a straight line. 

A detailed experimental or theoretical study could, in 

FIG. 3. Static interaction curve for a jet exciting an organ 
pipe. An acoustic particle velocity v out of the pipe mouth 
causes a pressure p due to interaction of the jet with the pipe 
lip. x 0 is the static offset in the position of the jet relative to 
the lip, as defined in Sec. 6. The broken curve is a cubic ap- 
proximation to the interaction curve, valid withi n the range A 
toB. 

principle, elucidate the form oi this curve, but we shall 
not attempt this here. Instead •we shall assume a gen- 
eral static characteristic of the Iorm 

= v", (s) 
n:0 

where the zeroth-order term a' 0 represents a static 
pressure produced by the jet and the linear term a• v 
was written in Eq. i as - •Pv. Higher terms describe 
the saturation behavior shown in Fig. 3. 

I/we take all the coefficients a; to be real and follow 
a development similar to that leading to Eq. 1, then we 
find, for a velocity disturbance vexp(iwt), the jet-gen- 
erated pressure disturbance 

p = •5-•.a•' v• exp[inw(t - d/u)- i•], (4) 

where the jet phase shift/5 is now incorporated explicit- 
ly in the argument. Any possible dispersive behavior of 
wave-propagation veIocity along the jet is immaterial at 
this stage since the higher harmonics are generated only 
in the interaction of the jet with the lip edge, rather than 
propagating along the jet. This statement does not hold 
true, however, for the next step in the development. 

We can now extend this analysis further to suppose 
that the original velocity disturbance has a Fourier 
series spectrum 

v(t)= • c,,exp(imwt). (5) 

In this expression, the coefficients c,• satisfy •a 

c.. =c.* , 

and w is positive. The resulting pressure disturbance 
is then 

p(t)= a'nxp(-iS) c,•exp[imw(t-d/u)] . (7) 

In Eq. 7, in distinction from Eq. 4, the'individual 
pipe modes whose amplitudes are c• are interacting with 
the jet at its orifice and the wave-like disturbance of fre- 
quency mw then propagates along the jet and interacts 
with the lip. If there is an appreciable dispersion in 
wave velocities along the jet as a function of frequency, 
then the velocities u appearing in Eq. 7 should be sub- 
scripted to u,• and the velocity appropriate to frequency 
mw used in each case. As in Eq. 4, there is no fur- 
ther complication of this type introduced by the nonunity 
exponents n and we only have to keep track algebraically 
of the individual velocities um involved. This is perfect- 
ly feasible if u is known as a function of frequency and 
the number of modes considered is not too large, For 
our present purposes, and in absence of detailed knowl- 
edge of' dispersion in the propagation velocity, we shall 
assume u to be independent of œrequency. 

It now no longer makes sense to try to define an effec- 
tive impedance for the jet because the nonlinearity leads 
to a great deal of frequency conversion. Rather, let us 
consider in a more detailed way the interaction between 
the jet and the resonant modes of the pipe. 
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III. THE JET-PIPE INTERACTION 

The oscillating air column in an organ pipe is a con- 
tinuous systerr b but for our present purposes it is most 
convenient to consider its behavior as resolved into an 

infinite sequence of normal. modes. Because of the 
damping associated with each mode and arising from 
viscous, thermal, and radiation losses, the resonances 
are not sharp but exhibit finite Q values. If •n is the 
acoustic displacement associated with the nth normal 
mode and B is a constant equal to the cross-sectional 
area of the pipe divided by the effective vibrating mass 
of the air column, then the equation of motion has the 
form 

d% + k. + =- (8) dt 2 

where •0, is its resonance frequency and k, its charac- 
teristic damping. The forcing term p(t) arises from 
the pressure fluctuations produced by the jet and its 
sign is negative because displacements have been taken 
as positive in a direction out of the pipe mouth. 

To solve the set of Eqs. 8 is a formidable task, but 
we can simpliiy them considerably il we assume the 
pipe resonances to be sufficiently sharp that they are 
essentially nonoverlapping. This is a good approxima- 
tion for the first few resonances of all reasonably 
shaped pipes and is valid up to at least n -• 10 for pipes 
with reasonably narrow scales like diapasons. For 
cylindrical pipes, the resonance frequencies •, form 
an approximately harmonic series so that they each 
select from the pressure spectrum of Eq. 7 a single 
harmonic with which to interact. If we denote by 0J the 
angular frequency of the fundamental component of 
which approximately corresponds with the pipe funda- 
mental wi, then Eq. 8 can be written as 

d•b +k d•b. +town,b, =-p,Bexp(incot) (9) • "dt ' 

where p, is the complex amplitude associated with the 
nth harmonic of p(t). The fundamental mode is not 
necessarily the strongest, or even excited at all, but, 
because of the nearly harmonic relation between the w,, 
Eq. 9 is still a convenient formulation in most cases. 

From Eq. 7, defining a,=Ba•, we can write formally 
for this pressure amplitude: 

Bp, • • a,c=mc,(•_) . ' ' c,(•)exp(- ino•d/u- i/5), (10) 
m 

where Y_• implies a sum over all possible sets of m(i ) 
satisfying 

re(l) + m(2) +--- + re(s) = n, {11 ) 

and, of course, the individual re{i) may be either posi- 
tive or negative integers. 

Now the velocity disturbance u(t) of Eq. • which in- 
teracts with the jet is simply the time derivative of the 
displacement •. But from Eq. 9) the form of the forc- 
ing term is such that the mode •, is constrained to vi- 
brate with the forcing frequency nw, so that 

•,= (c./inw) exp(inwt ). (12) 

If we use this. self-consistency condition in Eq. 9, then 
we find immediately the solution 

- in.p. B (13) c,= 2 (n•) •'+ino•k• ' 
Equations 10-13, when taken only to some finite value 

of s, constitute with their real and imaginary parts a set 
of 2s equations for the s complex velocity amplitudes 
c•,..., % and the angular frequency •o. We can, how- 
ever, without loss of generality, choose the origin of 
time so that the phase of the fundamental c• is zero, so 
that the 2s + 1 unknowns reduce to 2s and an explicit 
solution becomes possible. 

IV. PIPE WITH A SINGLE RESONANCE 

To gain some feeling for the behavior to be expected, 
let us first examine the behavior of a jet coupled to a 
pipe with only a single resonant mode of angular fre- 
quency c01. If the pipe resonance is sufficiently narrow, 
we can concentrate our attentiofi on the behavior of the 

fundamental pipe mode and neglect the amplitude of high- 
er modes in the pipe, even though they may be present 
in the jet. 

For our hter development, we shah be forced to trun- 
cate the power series expansion of Eq. 3 for the jet 
characteristic and it is important to find what limits 
this places on the range of validity of the solution. The 
analysis is simplilied by noting that neither a• nor a z 
enter into the solution. The linear term at is insufficient 
to yield a finite solution, so we investigate the behavior 
when Eq. 3 is truncated after the cubic term a•v a. The 
broken curve in Fig. 3 shows this cubic approximation 
and it is clear that, while the approximation is good for 
small amplitudes v and the saturation behavior is well 
reproduced, the curve becomes entirely incorrect for 
amplitudes outside the range AB. We note that, neces- 
sarily, ai < 0 and a• > 0. 

Proceeding with the formal solution of Eq. 13 and 10 
and writing 

0 • o•d/u, (14) 

we find 

(o•-•oz +i•okl)C[=-i•o(aicl+3ascl•)e 'i(e*•) , (15) 

the factor 3 arising in the cubic term since there are 
three terms in the summation on m in Eq. 10. The 
imaginary part of this equation gives 

c• = - [ai cos (O + O) + •1]/3an cos (O +/5), (16) 

so that oscillations occur provided cos(8 + ti) is positive 
and - a• cos(8 +/5) >/q. This solution lies in the range 
of validity AB provided that I a• I <• 2k•. The real part of 
Eq. 15 gives the sounding frequency and, neglecting 
smaller terms, we find 

w •- 0• - « k• tan{• +/5) . (17) 

In the "center" of the range of blowing pressures pro- 
ducing this fundamental, 0+5 =2•r and •o=0J•. As the 
blowing pressure is increased, u rises and O decreases, 
so that the sounding frequency o• increases above •o•. 
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Conversely, for pressures less tl•n that for the center 
of the range, w becomes progressively less than w t . 

The solutions of Eqs. 16 and 17 are mathematically 
and physically correct provided that the condition 

{a, 2kt (18) 
is met. This allows for an excursion of the jet from 
entirely inside to entirely outside the pipe lip, as well 
as all smaller excursions, and therefore represents a 
physically interesting range of situations. We must be 
carefuly, however, not to apply the solutions blindly to 
strongly blown pipes with very small damping coeffi- 
cients k t or we may exceed their range of validity. We 
shall examine this criterion a•ain after.considering the 
more general case. 

ß It is also worthwhile noting two other apparent solu- 
tions which arise from Eq. 15. The first is the quies- 
cent situation with c t = 0. This is physically legitimate 
but unstable and any smaU perturbation of the jet will 
cause a transition to the situation described by Eqs. 16 
and 17. The second is an artifact which arises from 

Eq. 16 if cos(0 +/5) is negative, and does not correspond 
to a real physical situation. It is easily eliminated by 
the requirement that cos(0 + 5) is positive. 

V. PIPE WITH MANY RESONANCES 

In this section we proceed as far as possible without 
restricting the generality of the problem. Finally then, 
we shall make some more explicit assumptions to treat 
a particular case as an example. 

The Eqs. 10-13 can be simplified to some extent by 
writing the complex amplitudes c, in the forth 

c, = d, exp(i•,), (19) 

where the d.are real positive quantities and, by Eq. 7, 

a.,=a,; •..=-•.. (20) 

Using this form and substituting from Eqs. 10, 12, and 
14 into Eqs. 13, we deduce, after a little manipulation, 
the equations 

- d.(wa• - n2w2)/nw = a t d. sin(nO +/5) 

+ aa Y•5-• d, dm d,.,.• sin(nO + •, - •, - •m 
l m 

- •.,.• + 6) +... 
and 

- k.d.=a,d. cos(nO +•) 

(21) 

cos(no - +/5) 

{ m 

- •,-,-, +/5) + .... (22) 

Straightforward solution of these equations for the d. 
½., and w, given that •t=0, now provides a solution to 
our problem. Usually one or other of the first two or 
three harmonics will have the dominant amplitude and 
the p(v) series, subject to the criterion of Eq. 18, can 
be approximated by its first few terms. We can there- 
fore proceed by truncating the problem to a relatively 
small order and, after solving this, proceed to the full 
solution by means of successive approximations. 

To this end, let us represent the interaction p(v) by 
the first three terms of its series expansion of Eq. 3, 
as discussed in the previous section. Let us also sup- 
pose that the physical situation (jet velocity and tube 
resonances) is such that either the first or the second 
harmonic is dominant. We therefore proceed to a solu- 
tion for these two components only, neglecting all d. for 
n>2. 

After a good deal of tediou s algebra, we find the solu- 
tions 

d[ = FtH, (24) 

sin•2 = ( I /2w%)(Fi/ H ) t / • , (25) 

cosq• 2 = (1/2w•)(F,tt)'t/z[C t + war +oJ• H(3F, - F2)], 
(26) 

(w• - 0) 2) cos(0 +/5) - wk t sin(0 +/5) , (27) 

(w•- 4w2) cos(20 +/5) - 2wk• sin(20 +/5), (28) 

(war - w 2) sin(0 .+/5) + cokt cos(0 + b) , (29) 

(waz-4w2)sin(20+6)+2wk2cos(20+/5), (30) 

H = wax(2F• +F2) +F2 G1 +F• G 2 (31) 
was(F • + 3FiF 2 - 2F•t) 

One of the Eqs. 25 and 26 would appear to be redun- 
dant, but in fact the allowed values of w are determined 
by the consistency condition 

cos2q• + sin2q• = 1.. (32) 

These Eqs. 23-31 thus determine the coefficients ct 
and c 2 in the Fourier series spectrum of Eq. 5 of the 
pipe oscillation. With these two components known, in 
the form (d,, q•,) and provided that our original assump- 
tion that one or the other of them is the dominant mode 

is justified, we can determine cs as (ds, •b2) from Eqs. 
21 and 22. We can proceed in this way to find all the 
Fourier components %. 

This procedure effectively takes into account the cou- 
pling of a given mode % with all modes c, for which m 
<n. Coupling with modes for which m >• is neglected. 
It is, however, now possible to refine the result ob- 
tained above by using these first approximations in Eqs. 
21 and 22. If the initial result or the refinement sug- 
gests that the dominant mode is not c• or c2 but some 
other c,, then the initial solution to find the oscillation 
frequency should be carried out for this c, and the next 
most intense mode. For a stopped pipe, for example, 
c t and c s should be used and, for an overblown open 
pipe,. c• and c s or c4. 

where 

F 1 = 

Gt = 

G 2 = 
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Vl. FURTHER CONSIDERATION OF JET 

INTERACTION 

To apply. this theory to a real situation we must first 
define a reasonable set of parameters to describe the 
jet and its interaction with the acoustic particle velocity 
v and with the lip of the pipe. This we now proceed to 
do. 

As shown in Fig. 4, the jet emerges from a reservoir 
under pressure P through a slit of length L and width 
2 W at the mouth of the pipe. It is a reasonable approxi- 
mation to describe the velocity distribution across the 
jet in the direction of its thickness W by an expression 
of the form 

W = Voexp[- (x- xo)a/W a] . (33) 
From Bernoulli's theorem we expect 

p • V e (34) =•P 0 , 

where p is the density of the air. We do not interpret 
the velocity distribution as implying a distribution in 
the disturbance velocity u (although this may happen), 
but rather simply as a blurring of the edges of the jet. 

In a real situation, the jet will spread and its velocity 
decrease as it moves across the mouth to the lip, but 
for simplicity, we shall ignore this complication and 
assume it to remain as a sheet of thickness W. The jet 
travels across the mouth a distance d and then impinges 
on the sharp lip of the pipe on the plane x = 0 at a trans- 
verse distance x0 (which we shall call the offset) from 
the plane of symmetry of the jet. We now further as- 
sume that, when a steady airflow of particle velocity v 
is flowing out of the pipe mouth, the jet is deflected out- 
wards by an amount av to be intercepted by the pipe lip 
at a distance %+ av from the jet symmetry plane. The 
coefficient a, with the addition of a phase shift as dis- 
cussed before, then measures the sensitivity of the jet 
to acoustic disturbance. 

For the purposes of our present calculation it is help- 
ful to dissect this parameter a a little further to display 
in approximate form its dependence on other physical 
parameters of the system. We qhould expect, for ex- 
ample, that a should vary inversely with the mass of the 
jet per unit length and directly with the travel time to 
the lip (i.e., directly with 8/•ot). It is therefore a rea- 
sonable approximation to write 

a = o/co, w, (35) 

where B is a more fundamental parameter measuring the 
interaction ateeriCh and depending upon qtmntities like 

FIG. 4. Schematic diagram of the mouth of an organ flue pipe 
showing the jet thickness 2W, jet width L, and lip cut-up d. 

TABLE I. Assumed values of parameters. 

:o i = 1000 sec a o•2=2100 sec 'l 
ki = 50 see '! k 2 = 50 sec 'l 
W=0.1 cm L=3 cm 

S = 10 cm 2 x0/W = 0. l 
P=10 mbar 

•=0.4 

the Reynold's number of the jet. 

Coltman e has analyzed the pressure produced by:a jet 
of cross section s and velocity If blowing into the end of 
a pipe of cross sections S and finds, for s << S, that the 
pressure generated is 

p=pIfes/S . (36) 

We can apply this equation to the portion of the jet enter- 
ing the pipe when the intercept position is x0 + av as 
above and, after some algebra, we find, for the first 
three coefficients in the expansion of Eq. 3, the values 

al =-- Co , 

= 2cw'%, 
a a = • CotaW'e(1 - 4x•o 

C = 2PLS q exp(- 2 x• W 'a) . 

This description of the jet and the nonlinear character 
of its interaction with the air column of the pipe is mani- 
festly incomplete and oversimplified and we make no 
claim for its general validity except as a heuristic ap- 
proximation suitable for our present purposes. A more 
detailed description must clearly take into account some 
of the points raised, for example, by Powell." 

VII. CALCULATION FOR PIPE WITH TWO 

RESONANCES 

In Sec. V we set out the formal solution of our prob- 
lem for a pipe with two resonances and showed how this 
could be extended to treat more general systems. To 
examine the predictions of the theory we now solve Eqs. 
19-32 together with Eqs. 35 and 37 for a representative 
system with two pipe resonances. The assumed values 
of the physical parameters are those set out in Table I, 
these parameters being varied one at a time to observe 
their effect on the solutions. In all cases, the overtones 
present are true harmonics of the fundamental and the 
condition in l•.q. 18 is satisfied for the whole range of 
the variables displayed, so that truncation of the non- 
hnear expansion is a valid approximation, as discussed 
in Sec. IV. 

The phenomenon of overblowing requires some sepa- 
rate comment. A pipe is said to be overblown when the 
amplitude at the pipe fundamental frequency falls to zero. 
The behavior of the second mode is. then given by Eqs. 
16 and 17 with (ca, •e, ke, 2•) in place of (q, •l, k•, •). 
This oscillation state can occur when •, as defined in 
Eq. 14, lies between •r/4 and 3•/4, provided now that 
- at cos(29 + 5) > ke, and the solution is quantitatively 
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(o) 
I d I 

o-i o.2 o.3 
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(6) 

kl,k 2 
8 io 12 

FIG. 5. (a)-(f) Effects on the oscillation behavior of a two-mode pip,e caused by varying individual ph¾s$cal parameters while 
keeping the others fixed at the values given in Table I. (g) Behavior of the pipe of Table'I as a function of blowing pressure with the 
lip cut-up held fixed at the value giving 8 = ?r for P = 10 mbar. (h) Behavior of the pipe of Table I as a function of lip cut-up distance 
as reflected in the phase parameter 8. (i) As for (h), but with the coupling parameter • doubled to 0.8. In each part of the figure, 
a broken line indicates an overblown condition'and a dotted line indicates a region where the truncation criterion of Eq. 18 is no 
longer valid. (P=blowing pressure in millibars, 8=phase shift in degrees for the fundamental as determined by propagation time 
across the lip cut-up, 2W--jet thickness and x0=jet offset both In centimetres, u•--soundi• frequency in radians per second, k I and 
k2=damping coefficients for first and second resonances in seconds 'l, Jl and J2 are veloci.ty levels of first and second harmonics of 
the pipe oscillation, in decibels, relative to 1 cm sec 'l. ) 
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valid if I axl < 2kz. 

The results of these calculations are shown in Fig. 5, 
which is largely self explanatory. In Fig. 5(g), the 
phase 8 is appropriately related to the blowing pressure 
P, so that the behavior shown is that of a pipe as the 
blowing pressure is increased, without other adjust- 
ments. The broken line indicates an overblown condi- 

tion. In Fig. 5(i), the coupling is doubled and the pipe 
overblows to the octave for small 8. Note also that the 

phase lag 8, which is related to the jet travel time, is 
most appropriately thought of as specifying the pipe cut- 
up, or distance from the jet orifice to the pipe lip. 

From these calculations several important conclusions 
arise. 

(1) For a note which is reasonably well above its 
sounding threshold, the amplitude of the fundamental is 
most largely controlled by the thickness W of the jet. 
The amplitude of this fundamental increases steadily 
with Wuntil, at a critical value (in this case W-•l.5 
ram), the pipe ceases to speak. 

(2) The amplitude of the second partial (which is, in 
fact, the second harmonic of the pipe tone), in contrast 
decreases as the thickness W of the jet increases. The 
amplitude of this second harmonic increases very 
markedly, for a given pipe, as the blowing pressure P 
is increased and has its maximum value at a pressure 
just below that at which the pipe overblows. The ampli- 
tude of the second harmonic is greatest when the fre- 
quency of the second resonance is equal to twice the 
sounding frequency. 

(3) The relative amplitude of the second harmonic also 
depends upon the asymmetry of the jet, as measured by 
the parameter x 0. In our simplified model the second 
harmonic component vanishes for a symmetric jet, x0 
= 0. For a real jet, it is likely that the difference in 
pressure environment for a jet blowing into or out of 
the pipe mouth is such that considerable asymmetry is 
always present. 

(4) For a given blowing pressure, the sounding fre- 
quency of a pipe depends strongly upon the cut-up of the 
lip (as reflected in the phase parameter 8) and decreases 
as the cut-up distance is increased. 

(5) For a given pipe, the sounding frequency depends 
strongly upon the blowing pressure and increases as this 

is increased. When overblowing occurs, the frequency 
jumps by a little less than a factor of 2, despite the fact 
that the upper resonance is at more than twice the fre- 
quency of the lower. 

VIII. CONCLUSIONS 

The approach to the nonlinear pipe excitation de- 
veloped in this paper is a quite general one but its pre- 
dictions in particular cases are quite explicit. The ex- 
ample displayed in the previous section is an arbitrary 
one, but its qualitative agreement with the accumulated 
experience of organ pipe voicers •4 and the subjective 
analysis of flute players is encouraging. A detailed ex- 
perimental Program is, however, clearly necessary to 
study the predictions of the theory and to clarify some 
of the physical parameters involved. Such a study is at 
present in progress in this laboratory. 
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