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1. INTRODUCTION

For many practical reasons we are often concerned with the prop-
erties of the interfaces between crystals of the same or different mat-
erials, and the problem of devising a model for the structure of such
interfaces has received a good deal of attention over the past 20 years.:
Many techniques have been used to obtain experimental information
about interface structure and behavior and the range of properties to
be studied is immense. We shall not attempt to survey this wide
field in the present paper but rather concentrate on a comparison and
interrelation of the models that have been put forward to describe the
structure and allow calculation of the energy of various rather simple
types of interface. A more general overview can be obtained from
the reviews by McLean (1) and by Amelinckx and Dekeyser(2).

The various models and theoretical approaches that we shall discuss
are superficially distinct and can be given different names — dislocation
models, coincidence lattice models, island models, etc. — but we shall
see that they have many features in common and that the distinctions
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arise because, in different physical situations, one or the other pictoria]
feature may be most prominent.

Rather than attempt a grand synthesis, let us begin with the sim-
plest sort of model and then see how it must be modified for more
complex situations. We shall see that, in fact, some interface con-
figurations can be described in a variety of ways, depending upon the
degree of emphasis given to the occurrence of specific atomic group-
ings. The equilibrium configuration is, however, determined by one
single requirement, that the free energy of the system be a minimum,
This minimum is not generally an absolute minimum, for this would
require that the boundary migrate out of the crystal, but rather a condi-
tional minimum subject to certain constraints. Thus we might fix
the orientations of the two crystals and allow the interface to assume
its equilibrium direction, this being a situation generally found in the
solidification of a melt. Alternately, we might consider a situation
common in growth from the vapor in which the orientations of one
crystal and of the interface are fixed and the second crystal may take
up any relative orientation so as to minimize the free energy. Itis not
to be expected that the results will be the same in each case.

A complication, from a theoretical point of view, arises from the
fact that it is the free energy, rather than the energy, that must be mini-
mized. “These two quantities are, of course, equal at 0°K, but evalua-
tion of the entropy term in the free energy at a finite temperature re-
quires not only a knowledge of atomic positions in the boundary but
also of the way in which vibrational modes localized on the interface
modify the total vibrational spectrum of the crystal. This latter con-
sideration is probably of no great significance in determining the equili-
brium configuration, since the total effect of the interface modes should-
depend little upon interface orientation. The detailed atomic struc-
ture of the interface will, however, depend to some extent upon tem-
perature, configurations of greater disorder being preferred at higher
temperatures. No detailed calculations have apparently been made,
and we shall not attempt this here, being content rather to minimize
energy instead of free energy and so to determine interface structure
at low temperatures.

II. DISLOCATION MODELS

A. A Simple Tilt Boundary

While early studies of the behavior of grain boundaries suggested
that they might present an amorphous transition region between the



DISLOCATION MODELS 283

two crystals, it soon became evident that this could not be the true
state of affairs, at least for small-angle boundaries. In 1940 Burgers(3)
and Bragg(4) proposed a model in which each crystal was continuous
up to the interface, the necessary connection between the two crystals
being provided by an array of dislocations. This modelis illustrated in
Fig. 1 for the case of a simple tilt boundary in which one half-crystal
has been rotated with respect to the other about an axis lying in the
plane of the interface. It is clear that, except at the dislocation lines,
there is little distortion of atomic environments across the grain
boundary, so that the energy should be low. For the case shown, if 6
is the angle between the two crystals and a the lattice parameter,
which is also the Burgers vector of the edge dislocations, then the
dislocation separation D is given by

D = a/(2sin 6/2) = a/@ H

Clearly, though it might always be a reasonable approximation to
consider the crystal lattices to extend right up to the interface, the
concept of a wall of dislocations can only apply if D > a. Takinga
dislocation separation D = 4a as representing a reasonable limit, this
cestricts the model to boundaries with § < 15°.  For very small-angle
boundaries the points of emergence of dislocations can often be made
visible by etching, as for example in the case of germanium (5), and
Eq. (1) has been verified exactly. '

The energy problem for such an array of dislocations was first solved
in classic paper by Read and Shockley (6) and we now consider this in
some detail, since its conclusions are important and form the basis of
.much more recent work.

From standard dislocation theory, the elastic stress field at a point
with coordinates (r, 6) near a single edge dislocation of Burgers vector

Fig. 1. Section through a simple small-angle tilt boundary between two cubic crystals.
The boundary consists of a grid of edge dislocations, of separation D, running normal to
the plane of the figure.
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b, lying along the z axis is given by
Opp = Ogg = —27, SIN O/r 2)

Oprg = 27 COS O/r
where
To = Gb/4m(1 —v) (3)

G being the shear modulus and » the Poisson’s ratio for the material,
assumed isotropic. This stress field is based on continuum theory and
clearly becomes invalid near the origin where the continuum approxi-
mation is no longer valid. We might therefore use Eq. (2) and the
associated expression for elastic energy only for r greater than some
small value r,, for which the continuum model is acceptable, and treat
the “core” region r < r, by more explicit means. Alternately Eq. (2)
might be used to some smaller radius r,, so chosen that the energy in
the region r, <r <r, is equal to the core energy, eliminating the-region
r <r, from consideration. It is this difficulty, which lies near the
heart of the dislocation model, that so drastically restricts its region of
applicability. The core radius r, is approximately two interatomic
spacings, so that the results we now consider can only apply for
dislocation spacings greater than about 4a.

The energy density derived from Eq. (2) behaves as 2. We have
already discussed the singularity at the origin, but there is also a
logarithmic divergence in the total elastic energy when this density is
integrated over an infinite crystal. This need not concern us, however,
since we wish rather to compute the energy of a whole wall of parallel
dislocations of equal spacing, as in Fig. 1. In this case the angular
factors in Eq. (2) remove the divergence and a finite result emerges.
The integration of the elastic energy density, using the r, artifice
discussed above, has been carried out by Read and Shockley and, fora
boundary of the type in Fig. 1, leads to the result

E= Toe(Ao_ln 0) (4)
where 7, is given by Eq. (3) with b = a and the constant 4, has the value
Ay = 1-+1n(a27r,) (5)

The boundary of Fig. 1 is not, however, of the most general type,
even for a simple tilt relation between the two crystals, for it lies along
a principal crystal axis. If, instead, we let the boundary make an
angle ¢ with a (100) plane, then Eq. (4) is generalized to

E=19(4A~In6) 6)
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where
= 10(cos ¢+ sin ¢) (N
and
sin2¢ singln sin ¢ + cos ¢ In cos ¢
2 sin ¢ -+ cos ¢

A=4,— (8)
The variation of A4 with ¢ over the range of 9 validity of Eq. (6) is not
large compared with the rapid variation of In 6. However, r does vary
by about 30% over the range of validity of Eq. (7), 0 < ¢ < «/2, and
is a minimum for ¢ = 0.

There are various other ways of deriving the form of Eq. (6) for the
energy [see, e.g., ref. (7)] which make it plain that the result holds for
much more general types of boundary than the tilt boundary between
simple cubic crystals discussed in the original paper, though Egs. (7)
and (8) are explicitin this case. We shall return to consider these more
general boundaries presently and give a simple derivation of Eq. (6).

Let us now look at the angular dependence predicted by Eq. 6)
which is plotted as a full line in Fig. 2. In this figure a value 4 = 0-23
has been used, since this is found to give good agreement with experi-
ment for a number of metals. We see that the grain boundary energy
has a sharply cusped minimum for § =0 and an energy maximum near
30°. This maximum is, however, outside the region of validity of the
result which should not extend as far as 20°. T his breakdown is

ENERGY E

010 20 30 40 50 60 70

MISFIT  ANGLE IN DEGREES
Fig. 2. Predictions of the Read—Shockley dislocation model for small-angle tiit boun-
daries. The full curve shows the form of the simple relation (6), while the broken curve
shows the cusped energy minima predicted by the hierarchical dislocation model and
Egs. (11) and (12).
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evident at larger angles, since the calculated E becomes negative for
6 > 70°, while it is physically obvious, in the case of a symmetrical
tilt boundary about an [001] axis, that = 90° is exactly equivalent to
6 =0°, so that the figure should be symmetric about 8 =45°. QOne
might reasonably take account of this symmetry by centering another
cusped minimum at 8 = 90° and interpolating hopefully between the
two curves but this is not really justified in the region 20° < § < 70°.

This simple theory, treating 4 as an adjustable parameter or using
the dimensionless form

E [ 0

where E,, is the interface energy at the position §,, of its maximum,
gives a very good description of the energy behavior of many interfaces
for < 9,: For 6 > 6, the energy generally ceases to depend on 6,
for example, in lead and tin(2) in germanium(8) and in AgCl(9).
Silicon iron does, however, show a tendency toward a maximum near
8 = 30°, in accord with Eq. (6) (ref. 2).

B. More General Grain Boundaries

The simple tilt boundary discussed in the previous section had two
degrees of freedom—the angles 6, specifying the relative orientation
of the two crystals, and ¢, specifying the orientation of the boundary.
The general grain boundary problem is specified by five parameters —
three to fix the orientation of one crystal relative to the other and two
to fix the orientation of the boundary (since rotation of a plane about
its normal has no significance). Despite this complexity, a simple
description of such a boundary in terms of grids of dislocations is
possible.

Before considering the general case, let us look at a simple twist
boundary in which one half-crystal is rotated relative to the other
about an axis normal to the interface. Atomic planes immediately
above and below the grain boundary are shown superposed in Fig. 3.
Again, following the principles expressed by Burgers and Bragg, we
may expect slight distortions in these two layers, so that as many atoms
as possible take up nearly normal relative positions and the strain is
concentrated into dislocations. In this case, however, instead of a
single grid of parallel edge dislocations as for the tilt boundary, the
pattern resolves itself into two perpendicular grids of screw dis-
locations, as is easily seen from the figure. A single dislocation grid
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Fig. 3. Atomic pattern parallel to a simple, small-angle, twist boundary between two
cubic crystals. Atoms above and below the boundary are shown as circles of different
sizes. Islands of good fit are apparent and the boundary can be described in terms of
two perpendicular grids of parallel screw dislocations.

is insufficient in this case, since it would lead to macroscopic shear
distortions in each crystal.

Aninteresting pictorial feature of Fig. 3 is the occurrence of “1slands,
in which the fit between the two grains is good, separated by channels
of highly distorted material forming the dislocation cores. This sort
of island concept has had a long history in the discussion of crystal
interfaces (10) and we shall see its recurrence in various forms at later
stages of our present exposition.

The energy of an array of screw dislocations has also been considered
by Read and Shockley (6), with the conclusion that here again the grain
boundary energy has the form of Eq. (6), though the values of 7 and 4
are somewhat different from those given previously.

Returning to the general case, we find that this can be analyzed by
a method due to Frank(11). The final result, which has been treated
in some detail by Brooks(12), has the form

B =2(uXv)sin (8/2) = 6uXxv) (10)

where v is any arbitrary unit vector lying in the plane of the boundary,
u is a unit vector parallel to the axis of relative rotation of the two
crystal parts separated by the boundary, 6 is the angle of rotation about
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u and B is the vector sum of the Burgers vectors of all dislocations
cutting v. The unit of length used in defining v should be very much
greater than the lattice spacing. Two arbitrary directions for v give all
the available information about the boundary from this relation so that,
if only one or at most two kinds of dislocation are present, their distri-
bution is uniquely determined. Ifthree or more dislocation types occur
in the boundary, then there are many possible geometrically consistent
solutions and the one physically applicable must be that with lowest
energy.

Kuhlmann-Wilsdorf(13) has considered the application of Frank’s
result in some detail. From the invariance of Eq. (10) with origin, we
can see that boundaries consist, in general, of intersecting grids of
parallel dislocations. If there is only one grid, then the boundary must
be a tilt boundary of the type shown in Fig. 1. A twist boundary has
two intersecting grids of pure screw dislocations, as shown in Fig. 3,
while any more complex boundary requires at least two grids of dis-
locations of mixed type. It can be stated quite generally that the
vector sum of the edge components, in the plane of the boundary, of all
Burgers vectors contributing to the network, multiplied by the respec-
tive dislocation densities, must vanish; the corresponding sum of the
screw components is equal to twice the negative angle of twist. The
general form of the energy formula(6) also clearly applies to arbitrary
boundaries, provided once again that the dislocations in each grid are
far enough apart so that there is no overlap of core regions. This
implies that the minimum at § = 0, for exact fit between the two grains,
is a cusp with respect to any arbitrary angular misorientations away
from this coincidence.

In many cases of interest, reasonably detailed atomic maps can be
drawn for such general boundaries on the basis of Frank’s formula(10)
and the qualitative criterion that atomic positions should be adjusted
so that nearest neighbor distances are roughly equal. A rather impor-
tant special case arises with the diamond cubic and related structures;
for, in these, interatomic forces are highly directional and it is physical-
ly plausible to talk of “bonds” between atoms. For these structures
there are only four nearest neighbors and their arrangement must be
closely tetrahedral, otherwise a bond becomes “broken” and these
“dangling bonds” have significance for the electrical properties of
these materials, which are electronic semiconductors. The geometry of
such boundaries has been investigated in some detail by Hornstra(14)
and by Holt(15).
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C. Hierarchies of Dislocations

When the angle 6 of a simple grain boundary is very small, the dis-
location model meets no difficulties and provides a completely valid
description of the interface structure. When 6 becomes greater than
about 5°, however, several difficulties arise. We shall leave the problem
of the proximity of the dislocation cores to the next section and take
up another point. :

The dislocation model and associated energy calculation discussed
above make one important assumption, which is that the dislocations in
any one grid are uniformly spaced. Since dislocations must occur on
atomic planes, this means that, for the simple case illustrated in Fig. 1,
only angles 8 such that

tan /2 = 1/n, n=1,2,3,... (11)

can be considered, which restricts § to the values 90°, 53°8', 36°52’,
28°4’,22°37',18°55',... The configuration § = 90° actually represents
exact fit and there are no dislocations, § = 36°52’ is a twin boundary en
a (210) plane, § = 28°4’ a twin on a (310) plane, etc. 1t is true that. the
angles listed are so large that the overlap between dislocation cores is
appreciable, so that the energy calculation may not be reliable, but at
least the model is consistent. For larger values of n, say n=12
corresponding to = 9°32', all conditions for validity are met, since the
dislocation spacing is almost 6a.

What happens, however, at a neighboring slightly larger value of 8?
The obvious configuration seems to be one-in which most dislocations
are spaced at 6a from their neighbors, but there is an occasional
spacing of only Sa. Read and Shockley suggest that this problem
may be thought of as a regular dislocation grid of spacing 6a, together
with a superposed grid of dislocations of effective Burgers vector a/6,
spaced so that one such dislocation occurs in each Sa-spaced region.
If the deviation from the symmetrical position 8 = 9°32" is 36, then the
approximate spacing of these second-order dislocations is a/686.
There is obvious difficulty in treating the core of these second-order
dislocations but, provided that their spacing is large, most of their
energy will reside in their elastic strain fields and will contribute an
additional interface energy of order '

8E¢ = —(1/6) 36 In 56 (12)

which is a simple cusp of form like that near the coincidence point
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6 =0 but of less depth. Similar cusps should occur around each of the
orientations given by Eq. (11).

It is difficult to make any very precise calculations on the basis of
this treatment, but its general implications are clear. The smooth
curve of Fig. 1 represents a line drawn through the cusp orientations
given by Eq. (11), while a more realistic angular dependence for the
energy is that given by the cusped curve, shown as a broken line.
The whole figure has been extended to rather large angles to show the
behavior to be expected, but it must be remembered that its real
validity does not extend past about 15-20°. .

D. Large-angle Boundaries

It is obvious that the simple dislocation treatment must be modified
to some extent if it is to serve for an analysis of large-angle boundaries.
Much of this modification is most easily accomplished with the aid of
some new concepts which we shall introduce in alater section. For the
present, let us take up the question of what happens when the boundary
angle 6 is so large that dislocation cores begin to overlap but not so
large that a simple twin boundary configuration is approached.

This problem has been discussed by Li(16) who extended the simple
r~ form of the stress field around an edge dislocation, by adding an
r~3 term of opposite sign. The stress in the slip plane then has the
form ¢

2
Troea =27 (3 =12) (13)

where 7 is given by Eq. (3). This stress vanishes for r = ry and, if we
assume.it to vanish for all smaller r, represents properly the field round
a dislocation with a stress-free core of radius r,. It is thus an improve-
ment on the simple representation used before and is a moderately
good approximation to reality if r, < a/2.

With this form of elastic model, Li finds that, when ro = af2, the dis-
location cores begin to overlap when 6 in a simple tilt boundary exceeds
37°. For smaller angles the behavior is very similar to that of the Read-
Shockley model, with small modifications because of the r—3 terms; but
for larger angles the cores unite to produce a slab of virtually amor-
phous material and, instead of decreasing continuously, the energy
becomes independent of angle.

While this model certainly contains an element of realism and some
of its features represent an improvement on the earlier model, it suffers
from some grave defects. In the first place it fails to give any descrip-
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tion of atomic positions within the core region and so is incomplete in
this regard: in fact, the grain boundary energy in the angle-independent
region cannot be determined directly from the theory. Secondly,
though the model has a certain attraction in the region where the dis-
location cores begin to overlap, it fails to predict the occurrence of
low-energy twin boundaries at higher angles.

III. EXTENSION OF THE DISLOCATION MODEL

A. Intercrystalline Boundaries

The dislocation models that we have so far considered have been
limited to a treatment of the grain boundary between two crystals of the
same material. While this represents a very important practical and
theoretical case, any complete theory must be able to deal also with
the structure and energy of interfaces between quite different crystals.

The principal difficulties in this more general class of problems are
that atomic interactions across the boundary must now be treated much
more explicitly than before and that the elastic properties differ in the
two semiinfinite crystal regions. The discussion is essentially that
of Van der Merwe(17, 18) based on earlier work by Frank and Van
der Merwe(19). Three particular simple cases can be recognized:

1. Two crystals of identical structure but different lattice parameters
meeting in parallel orientation across a common low-index plane.

2. A simple twist boundary between identical crystals.

3. A simple tilt boundary between identical crystals.

Case (1) represents the extension made in the theory and, whén com-
bined with an appropriate treatment of cases (2) and (3), which have
already been discussed, provides an analysis of quite general inter-
faces.

Van der Merwe’s treatment does not set out to be completely
rigorous but relies upon two simplifying approximations. We have
already seen that boundaries can be described in terms of intersecting
grids of dislocations; the first simplification is to treat each of these
grids independently, thus reducing the problem to a superposition of a
set of one-dimensional problems. This approximation is exact in the
region of linear elastic behavior but becomes inexact in the nonlinear
regions that represent dislocation cores. The second simplification is
to split the atomic interaction problem into three parts: two elastic
continua representing the crystals and an atomic interaction across
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the boundary which is assumed to have a simple sinusoidal form. One
half-crystal acts upon the other through the shear stresses produced
by the effect of this sinusoidal potential upon the atoms at the interface,
and these stresses extend into the crystal by the ordinary laws of linear
elastic theory.

To illustrate the analysis as applied to case (1), consider the situation
shown in Fig. 4, which represents a section normal to the interface of
two crystals differing in lattice parameter. It is clear that there is an
edge dislocation near the center of the figure. In the lower part of the
figure is shown the sinusoidal potential experienced by the atoms of the
upper crystal due to their interaction with the lower crystal. Itis clear
that these interactions produce shear stresses that tend to give the best
possible fit between the two crystals and to concentrate the strain very
close to the dislocation.

Since the elastic interactions are symmetrical between the two cry-
stals, it is best to carry out the analysis with respect to an average
crystal lattice. Suppose that the upper crystal has lattice parameter a
and the lower b and that they are related by

D=(N+1a=Nb=(N-+Hc (14)

where N is an integer. Then the average lattice used for reference has
parameter c, defined by Eq. (14). If axes are chosen with origin at the
dislocation, x axis along the interface and z axis into the crystal, then

Fig. 4. Section normal to the interface between two simple crystals of different lattice
parameters. The misfit is taken up by an edge dislocation at the center of the figure.
Below is shown the potential ¥ of the atoms of the upper crystal at the interface through
interaction with those of the lower crystal, assuming a simple sinusoidal force law.
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the shear stress at the boundary due to the interaction has the form
P22(0,x) = (w/2m) sin 27u/c) (15)

where u is the relative displacement of two atoms across the interface
at position x. Thus u increases by c in the distance D given by Eq.
(14), but the increase is not necessarily linear in x if the crystals are
distorted. The quantity wu determines the strength of the interaction
across the boundary. Because these tangential stresses are coupled
elastically to normal stresses through an effective surface Poisson’s
ratio, the normal stresses p,,(0, x) at the surface do not vanish. They
must therefore be included in the general theory but, for simplicity, we
neglect them here.

These surface stresses produce elastic strains at the crystal surfaces
whose effects extend into the interior in a way that can be treated by
ordinary elasticity theory(17). The general state of strain in such a
semiinfinite body can be analyzed in terms of an Airy stress function x
that, for the half-crystal with z > 0, has the form

x=2 ;%(Bn—i-mzcn)e‘mz sin mx (16)

where m =2mn/D and n=1,2, 3, ... The stresses in the material
are derived from x by the relations

Prx= aleazz’ Pz ™ 32)(/3)(?2, Dz = _azx/ax dz a7

and it can be seen that they all fall off exponentially with distance from
the interface. From Egs. (16) and (17) the general form of the atomic
displacements at z = 0 is easily found, and hence the relative displace-
ments u across the interface. Substitution into the shear stress
relation (15) and the equations specifying the continuity of stress
across the interface then provides equations from which the F ourier
components B, and C,, can be uniquely determined.

The sort of general solution found is illustrated in Fig. 5. The
relative atomic displacements u are seen not to vary linearly with x,
as in the undistorted case, but to concentrate their change near the
dislocation region x = 0. From Fig. 5 it can be seen that the core of
the dislocation, where u differs gigniﬁcantly from O or ¢, extends about
2a on either side of the dislocation line, in agreement with our earlier
discussion. The width of the dislocation could, however, be sub-
stantially modified if the interaction force parameter w in Eq. (15) were
taken to differ considerably from the shear modulus of the crystals, as
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02

6 4 2 o0 2 4
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Fig. 5. The relative displacement, u, in terms of mean lattice parameter ¢, across a
simple one-dimensional dislocation of misfit § = 0.05, x measures the distance in the
interface (ref. 17).

is physically possible if the crystals bond only weakly to each other
for chemical reasons. "

It should, perhaps, be pointed out that there is no difficulty, in the
present case, in treating core regions that overlap, since the cores are
treated to the same approximation as the rest of the problem. Despite
this, we shall still firid other difficulties for large angles.

The results of a typical calculation of this type are shown in Fig. 6.
There is a cusped energy minimum for exact matching, b = q; the
energy then rises smoothly as the misfit 8 = (» —a)la increases. The
energy dependence very near the cusp, depending as it does simply on
the dislocation spacing that varies as 1/8, has a form essentially equiva-
lent to that derived by Read and Schockley for grain boundaries, Eq.
(6). It should be noted that the energy scale is in units proportional
to ¢ = (a+b)/2 and its overall rising form'depends upon this choice.

The formalism of Van der Merwe provides a simple and instructive
way of deriving the —8 In & or —6 In 6 form of the energy cusp(20,21).
From Egs. (16) and (17) we can derive all the components of the elastic
stress; for example, the principal shear stress is

Pz =2 [(B,—Cp)+mzC,] e~™ cos mx (18)
n

The elastic strains have the same form, differing only by a constant
elastic modulus factor, say n, whose exact value depends on which
strain component is being considered. The elastic strain energy in
each half-crystal can now be evaluated by integrating half the product
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Fig. 6. Interfacial energy E, in units of uc/4w* per unit area, for a simple interface with
misfit 5 in one direction only. Curve 4 shows the elastic strain energy in the two half-
crystals, curve B the energy of misfit due to the sinusoidal potential at the interface, and
curve C the total energy (17).

of stress and strain over the half space. Reducing this to the energy
per unit area, we find, for these shear strains,

E;=m,"" E (Bn—1/s Cll4m (19)

Other distortion components can be treated similarly.

Now, if we assume a simple dislocation model, the two crystal inter-
faces are in exact registry across the z = 0 plane, except at the disloca-
tion lines. To achieve this, the interface displacements must be of
saw-tooth form with a maximum amplitude a/2 for each half-crystal.
For a dislocation spacing D, such a displacement has the Fourier
resolution

u, = (alm) Y, (—1D*n~!sinmx 20)
n

We differentiate this, and multiply by the modulus n,. A comparison
with Eq. (18) for z = 0 shows that

B,—C,=2(=1)*an/nD 2D

which is independent of n in magnitude. Using similar arguments for
the other elastic distortion components, we find that Eq. (19) then
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gives the total elastic energy per unit of interface area in the form
E=AMma*D) 3 (1/n) (22)

where A4 is a numerical constant.

Now the series plainly diverges if carried to infinity; but physically
this should not be done, since it implies an infinitesimally narrow dis-
location, while the nature of the crystal lattice requires a dislocation
width of at least a. Putting this another way, wavelike crystal distor-
tions having wave numbers lying outside the first Brillouin zone have
no physical significance. We must therefore truncate the series in

Eqg. (22), so that
n<N=DJa (23)

The series X¥_ (1/n) has the asymptotic form K +1In N, where K is a

constant lying between 0.577 and 1.0, so that Eq. (22) becomes
E = (Ana*D)[K+1n(Dfa)] 4)

By Egs. (1) or (14), however, a/D simply measures the interface misfit
6 or 3, so that Eq. (24) has the form

E~70(K—In#) or 78(K—In &) (25)

and the exact point of truncation of the series, and hence the width of
the dislocation, are seen to have their effect through the value of K.

Van der Merwe (17) has also used this approach to discuss the energy
behavior of simple tilt and twist boundaries, again using a sinusoidal
approximation for interactions across the interface. In the case of a
twist boundary, as for the Read-Shockley model, the two sets of dis-
locations must be treated separately and then superposed. The results
are shown in Fig. 7. Both curves show a cusp of —6 In 6 form at 8 = 0,
but, in contrast to the results of Read and Shockley, the curves rise
continuously with increasing 6, rather than reach a maximum or even a
plateau. This does not agree well with experiment, and the curves
have the additional fault, in common with the Read-Shockley model, of
not showing the required symmetry between § = 0 and /2. This may
be remedied, in a fashion, by writing a symmetrical expression

s

EL(8) =E(0)+E<§~0)—_E(5> (26)

which gives a flatter curve, but this cannot really be regarded as
satisfactory. )
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Fig. 7. The dependence of interface energy E upon misfit angle 8 for twist and tilt
boundaries in a cubic crystal, from the calculations of Van der Merwe(17). Energy for
twist is in units of wa/27* and for tilt in units of pa/27* (1—2v).

B. Finite Overgrowths

One very useful feature of this approach is that it lends itself very
easily to treatment of the case in which the thickness of one of the
crystals is small, a case of practical interest for many problems of
heterogeneous nucleation and of epitaxial growth. This extension has
been treated by Van der Merwe(22). The procedure is simple in
principle and only requires the inclusion of terms in exp (+mz) in the
stress function (16), so that the stresses may vanish at the free surface.

For thick crystals this finiteness has little effect because, from Egs.
(16) and (17), the strain fields decay exponentially away from the inter-
face with a decay length 1/m for the lowest Fourier component equal
to D/2, where D is the spacing between dislocations. Higher com-
ponents decay more rapidly. We therefore think of the interface
region as having a thickness of the order D/2= on either side of the
dividing plane; the effect of crystal thickness will be small until the
free surface begins to penetrate this zone.

The analysis of this case shows an interesting possibility for very
thin films which may, if the misfit is small enough, have a minimum
energy configuration in which the film is homogeneously strained into
exact conformity with the substrate, rather than develop interfacial
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dislocations. This sort of behavior is practically limited to mono-
layers, or perhaps double layers, which are elastically rather soft and
are bound tightly to the substrate. In such cases homogeneous strain
may occur up to a limiting misfit & of about 0.13, in agreement with an
earlier estimate by Frank and Van der Merwe(19). For thicker,
harder, or less closely matching layers, however, the misfit is always
taken up in dislocations.

C. Subsidiary Minima

Since the analysis of Read and Shockley (6), when carried out in full,
suggests that there should be subsidiary energy minima associated with
particular misfit orientations, it is natural to enquire whether or not
such effects are predicted by the present theory. This question was
first taken up by Fletcher(21) on the basis of a model rather similar to
that of Van der Merwe but using repeating parabolic wells, instead of a
sinusoidal potential, to represent the interface. The analysis was,
however, rather different and used a variational method to establish the
configuration of minimum energy. We shall reserve discussion of this

technique to a later section, where it is treated more generally, and

simply point out the conclusion that, in the one-dimensional misfit case,
there are cusped energy minima wherever the two lattice parameters
are in the ratio of two small integers, like 3:2 or 2:1. The depth of
these subsidiary minima is related to the amplitude of particular
Fourier components in the assumed interface potential, and a sinusoidal
potential gives minima only for lattice ratios n: 1, where 7 is an integer.

These conclusions, which have been more rigorously investigated by
du Plessis and Van der Merwe(23) using a simpler physical model,
form a fairly obvious generalization of the work of Read and Shockley
for grain boundaries; the solution of du Plessis and Van der Merwe
makes use of similar ideas involving dislocation hierarchies. We
shall see later, however, that they have a wider and rather more
fundamental significance than this.

IV. COINCIDENCE LATTICES

A. The Coincidence Lattice Concept

A most useful concept, which antedates the various dislocation
treatments of grain boundaries, is that of the coincidence lattice. It is
at once a simple and a general concept.

Consider two crystals of quite general structure whose interface



COINCIDENCE LATTICES 299

properties we wish to examine, and imagine that the lattice of each is
extended to fill all of space. In general there will be no common
points between the two lattices; but it will always be possible, by
infinitesimal adjustments of positions and lattice parameter, to bring
into coincidence four pairs of points of the two lattices such that the
four are not coplanar and no three are collinear. Because these
adjustments have been infinitesimal, the physics of the problem is
unchanged.

Now, because of the translational symmetry inherent in crystals, the
existence of these four points of coincidence between the two lattices
implies the existence of a whole three-dimensional lattice of common
points; this we call the coincidence lattice. In general the unit cell of
the coincidence lattice will be very large but, for certain relations
between the two crystals, it may become small. It is these cases that
will be of particular interest to us later. A particular example in two
dimensions is shown in Fig. 8, the common points such as O, 4, B,
C ... forming the coincidence lattice. It is easy to picture similar
structures in three dimensions.

It is useful to measure the degree of matching between two such
crystals by specifying the reciprocal density 2 of coincidence lattice
points in terms of the density of ordinary lattice points. The possibili-
ties in the general case are numerous but systematic relations exist
when the two crystal lattices are identical. No general relation giving
possible values of T is known even in this case, but Friedel(24) has
shown that all 3 values are odd in the cubic system and Ranganathan
(25) has extended earlier work to derive a generating function capable
of giving possible £ values for two cubic crystals related by a rotation
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Fig. 8. A two-dimensional coincidence relation between two cubic crystals of different
lattice parameters. OABC .. .are points of the coincidence lattice and the linear trans-
formation .« relating the two crystals is shown in the lower right-hand corner.
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about an [Akl] axis. His result is
> =x2+(h2+k2+[2)y? 27

where x and y are integers having no common divisor, and any even
values given by Eq. (27) should be divided successively by two until
odd. The angle of rotation for a particular boundary described by
Eq. (27)is given by

0 = 2 tan~* [(y/x) (h%+ k2 + [2)12] (28)

Some results are shown in Table I for the particular cases of rotation
about [111] and [210] axis directions. It is clear that = = 1 corres-
ponds to exact coincidence between the two crystals, while 3 = 3
refers to the simplest kinds of twin relationship.

For cases in which the two crystals have different structures or
lattice constants, the orientations yielding coincidence lattices of small
3, if any exist, can usually be determined by inspection.

B. Interface Models

A model for a quite general class of crystal interfaces can be con-
structed on the basis of the coincidence lattice concept. To see how
this can be done, let us first consider the case of a grain boundary
between two similar crystals, following the method of Brandon (2 6).

Suppose that we have constructed an interpenetrating model for the
two crystals; then we ask how the boundary between them should be
oriented so that its energy is a minimum. Clearly, if we find a plane
boundary passing through a large number of coincidence lattice points,

TABLE I
Coincidence Lattice Relationships
[after Ranganathan (25)]

[111] axis [210] axis

“x y X 0(degree) x y I 6(degree)

1 0 1 0 1 0 1 0
11 1 120 11 3 "131.8
0 1 3 180 0 1 5 180
31 3 60 31 7 73.4
2 1 7 818 2 1 9 96.4
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then the number of bonds that are broken across the boundary is smal-
ler than for a general interface, so that the energy is lower and this
“coincidence boundary” is preferred. This conclusion is only true
if the density of coincidence lattice points in the boundary is large, for
only then will this consideration dominate over more subtle points of
atomic fitting, so that such boundaries are restricted to reasonably
small values of 2, say = < 20.

These possible coincidence boundaries are easily identified by the
method discussed in the previous section, taking account of the particu-
lar crystal structure involved. The first few such boundaries are listed
in Table II for body-centered and face-centered cubic structures.

It is plain, however, that coincidence boundaries will rarely be
exactly achieved. What can be said about slight deviations from such
exact relationships? The first case to consider is that in which the two
crystals are correctly oriented to establish the coincidence lattice, but
for some reason the boundary is constrained to lie at some angle to a
densely packed coincidence lattice plane. If this angle is small, then
the boundary will take up a stepped configuration with the long faces of
the steps lying along coincidence planes. The energy of such a con-
figuration will be low, provided that the density of steps is small, a
criterion which probably applies for angular deviations up to 15° or so.

The second and more generally important case is that in which the
relative orientation of the two crystals is not exactly that required to
establish a coincidence lattice of small . Brandon points out that it is
possible, in such a case, to distort the crystals slightly to achieve the
required exact coincidence over regions of moderate size, but the
coincidence lattice in these regions will be separated from that in
neighboring regions by grids of dislocations. This is exactly analogous
to the situation that we met in treating simple grain boundaries; the

TABLE 2
Simple Coincidence Boundaries
[after Brandon (26)]
Twinning direction Densely packed plane
p> bee fec bee fce
3 111 112 112 111
5 012 013 013 012
7 123 123 123 123
9 122 114 114 122
11 113 233 233 113
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energy may be calculated similarly, the exact coincidence configura-
tion corresponding to a cusped minimum in the energy.

In the same way as for a simple boundary, we may expect such a
model to be valid as long as the dislocations in the coincidence lattice
are sufficiently far apart to maintain theéir identity. Since the point of
invalidity for a simple lattice occurs for 8 > 0, = 15°, Brandon suggests
for the coincidence lattice the generalized validity criterion

86 < 6, (2)—1/2 ' 29)

where 86 is the angular deviation from the coincidence relationship.
From this relation and an extended version of Table II it is possible to
determine the total region of relative configuration over which this sort
of generalized coincidence boundary model is applicable. This is
shown pictorially in Fig. 9, only boundaries with 3 < 20 being in-
cluded.

Two things are apparent from these stereograms. First, there are
regions in which two possible boundary configurations may exist.
Here the relevant solution will be determined by the constraints on the
boundary or, if it is free to reorient itself, by the configuration having
lowest energy. Second, the angular ranges over which some sort of
coincidence boundary model is applicable comprise a moderate frac-
tion of the total of possible orientations. Even allowing for certain
double counting in Brandon’s original estimate, roughly 40% of relative
crystal orientations can be connected by boundaries of this kind if the
boundary orientation is free. If the boundary orientation is also
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Fig. 9. Stereographic plot of the range of orientations over which coincidence boun-
daries can exist: (a) is for face-centered and (b) for body-centered cubic crystals (26).
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arbitrarily fixed, then the fraction of boundaries properly described is
probably about 10%.

As well as treating grain boundaries, however, the coincidence
lattice approach is a valuable conceptual aid in dealing with interfaces
between different crystalline materials, e.g., in situations of epitaxial
growth of a crystal upon a substrate. Here the geometry of the sub-
strate surface is fixed and the preferred overgrowth orientation will be
that with the lowest energy. From the argument above, we should
expect this orientation to be that which establishes a maximum density
of coincidence lattice points in the interface, allowing slight deviations
from exact coincidence to be taken up in dislocations.

1t is immediately clear that this is a simple generalization of the
conclusions reached in the last section on the basis of the one-dimen-
sional analyses of Fletcher and of Van der Merwe. The cusped
minima at points of simple integer relations between lattice parameters
are the exact one-dimensional analogs of the coincidence lattice
relations. The three-dimensional picture provides the necessary extra
concepts to deal with preferred orientations and similar generalizations.
We shall return to a more detailed discussion of energy relations in a
later section.

C. The O-Lattice Concept

We have seen that the coincidence lattice provides a powerful aid to
the description of a wide variety of crystalline interfaces. We now
turn to a generalization of this idea which provides still further insight
into the geometry of interfaces.

Consider two crystal lattices having one point O in common and
interpenetrating to.fill all of space, as in our original introduction of the
coincidence lattice. Then, for a wide class of lattices, we can regard
one as having been formed from the other by a homogeneous linear
transformation .7 performed about the point O as origin. To be expli-
cit, we can regard each point r’ of one lattice as derived from a
corresponding point r of the other lattice by the relation

r =4r (€10)]

Thus, in Fig. 8, & involves a relative rotation of about O of tan™*(*/;) =
18°25’ and an expansion of one lattice relative to the other by a factor
V(3/,) = 1.5811, again keeping O fixed. This particular choice of &
is seen to generate an infinity of coincidences 4, B, C, ... between the
two ‘lattices; these coincidence lattice points have the important
property that we could have reached the same final configuration by

'
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applying the transformation .« about any one of them as origin instead
of O. The particular atoms brought into coincidence would have been
different, but this is immaterial.

Now consider the case shown in Fig. 10, in which & represents a
relative rotation of tan=! (%/,¢) = 26°51’ and there is no change in
lattice parameters. ‘The coincidence lattice points 4, B, C, ... are
generated as before, but it is also obvious that there is another set of
points like O’ which also have the property that the transformation
applied about any one of them converts one lattice into the other.
Following Bollmann(27), we define the O-lattice to be the totality of
points possessing this property. Clearly, the coincidence lattice points
are a subset of the O-lattice points or, equivalently, the coincidence
lattice is a superlattice of the O-lattice. The O-lattice for a particular
relation between the two crystal lattices is not completely unique; in
general, there will be at least two different O- lattices, defined by two
different relations ./ and &', and involving different pairings between
lattice points in the two crystals for any particular situation. This
does not create any difficulty and it is generally the O-lattice with the
largest spacing that has physical significance, as we shall see later.

In one important property the O-lattice may differ greatly from an
ordinary crystal lattice. This is in the matter of degenerate forms.
Figure 10 shows the ‘O-lattice for a particular two-dimensional case.
A little thought shows that, if this is considered as a projection of a
three-dimensional problem in which the crystals are rotated about an
[001] axis, then, with our definition of the O-lattice, this actually con-
sists of continuous lines through the points O, O', ..., parallel to the
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Fig. 10. A two-dimensional coincidence relation between two cubic crystals, yielding
the coincidence lattice points OABC .. .. The linear transformation & illustrated in the
lower right-hand corner, when applied about O, transforms one crystal lattice to the other.
The same transformation applied about points like O’, as illustrated in the upper right-
hand corner, has the same effect. The totality of points like O and O’ comprise the O-
lattice.
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[001] direction. A similar degeneracy to sets of parallel lines in the
boundary plane can also occur and then has greater physical signifi-
cance. )

Bollmann (27) has derived the algebraic relations determining the O-
lattice and has used these to investigate in detail the specific case of
two body-centered cubic structures related by a rotation 8 about a
common [110] axis, the boundary of interest being the (110) plane
perpendicular to this axis. The two possible computed O-lattices for
various values of 6 are shown in Fig. 11. Also shown is the moiré
pattern obtained by superposing atomic layers of the two crystals
from immediately on either side of the boundary.

The result is immediately startingly evident: there is an almost exact
pictorial correspondence between the moiré pattern and one of the two
O-lattices, that derived from transformation «/ for § = 10° and that
from .’ for the larger angles. The reason for this correspondence is
fairly obvious from a consideration of Fig. 10. The O-lattice points
are points of particular symmetry and are either at coincidence lattice
points surrounded by more than average amounts of empty space or are
themselves at the centers of such empty spacés. The O-lattice points
or lines thus correspond to the light features of the moiré pattern. The
physical significance of the light parts of these patterns is that they
correspond to nodes in the displacement pattern when elastic relaxation
is allowed. The O-lattice formalism thus allows these nodes to be
analytically described.

Bollmann has extended this analysis to investigate the effect of small
relative translations of the two crystals and has shown how dislocation
networks can be introduced, in the same way as suggested by Brandon,
to simplify the patterns and reduce the energy.

V. ENERGY CONSIDERATIONS

A. Atomic Interactions

At the beginning of this chapter we remarked that the interface
problem is essentially variational in nature—we seek that interface
which will minimize the free energy (or, approximately, the energy) of
the system, subject to such constraints as may be applied. All the
approaches so far discussed have essentially attempted this, but they
have done so by combining elements such as dislocations for which the
minimum energy solutions for the strain field and related quantities
were already known. The point we now take up is whether some
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Fig. 11. The relation between the two possible O-lattices, for rotation of a body-
centered cubic crystal about a [110] axis, and the moiré pattern of the boundary. For
6 = 10°, the moiré pattern is represented by the transformation .« and for higher values
of 8 by &' (27). 306
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direct variational procedure might lead more conveniently or more
generally to information about the crystalline interface.

The variational approach is simple to formulate in general terms if
the interaction potentials between all the atoms involved are known.
We have only to vary the positions of all the atoms, subject to whatever
constraints may be applied, such as those defining the relative orienta-
tions of the two crystals, until the total energy is a minimum. This is
too big a program to be feasible in practice, and various simplifying
assumptions must be made. The most obvious. simplification is to
recall that, except in the immediate vicinity of the boundary, it is a
valid approximation to regard each crystal as an elastic continuum with
appropriately anisotropic elastic moduli. If we adopt this, then the
approach reduces to an atomic-scale variational problem for a few
atomic layers on either side of the interface joined, by stress continuity
conditions, to a simple elastic problem represented by stress functions
of the type of Eq. (16). This is now a tractable situation using modern
computers, though the labor may be long. Such explicit computer
solutions, though valuable in their way, shed no particular light upon.
the interface problem itself. However, we shall see that, when
properly.formulated, the variational approach can serve to make more
quantitative some of the ideas about coincidence boundaries set out in
the previous section.

Before discussing this further, let us examine the sorts of potential
functions that characterize the interactions between atoms. These
will vary with the type of material and may radically affect some of the
approximations we can make.

In ionic crystals the dominant interaction is of electrostatic origin
and may be of either sign. In addition, there is a short-range repulsive
potential, due to quantum effects when ion cores begin to overlap,
which can be reasonably represented as r~™ with n about 12. The
universal attractive dispersion force can be neglected in comparison
with these other forces, and we may write the total interaction potential

as V(r) = ar-1*=br! 31

The Coulombic term is only conditionally convergent over an infinite
crystal but leads to no difficulty when summed to give the Madelung
energy. In fact, though the potential of an individual ion has such a
long range, the potential outside a complete crystal face falls off almost
exponentially with distance (28).

For the interactions between uncharged atoms, such as in inert-gas
crystals, the dispersion forces are important and the interaction can
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reasonably be represented by the Lennard-Jones potential

V(r) = Vol (r/ro) 2 —2(rlre)~¢] (32)
or by the analytically more tractable Morse potential
V(r)=Vy{exp[—2a(r—ry)] —2exp [~alr —ro)l} (33)

where V' (r) has a minimum value —V, at the equilibrium distance r,.
These potentials are shown in Fig. 12.

In a metal the interaction is primarily that between ion cores,
shielded by the charge distribution of the valence electrons and bound
together by a simple volume-dependent electrostatic interaction. If
the volume is kept constant, then the two-body interaction potential
might be expected to have a simple, shielded Coulombic form

V(r) =Ar *exp (—ar) (34)

A more careful treatment of the shielding, however, shows that the
sharp cutoff in electron density at the Fermi surface can give rise to
potential oscillations of considerable magnitude, the so-called Friedel
oscillations [see (29) for a recent treatment]. A typical potential, in
this case for aluminium, is shown in Fig. 12¢. Although this sort of
potential is strictly nonlocal, since it depends on collective electron
effects, it is valid for many cases to treat it in the same way as an
ordinary potential. For isolated misplaced atoms or for dislocations,
this is probably satisfactory(30). For a grain boundary this approxi-
mation is less clearly valid because of other effects but is unlikely to be
very much in error. For interfaces between different metals, however,
we may be very much astray because of different densities for electron
states in the two metals. The potential shown in Fig. 12¢ has, how-
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Fig.12. a—Lennard-Jones potential; b~ Morse potential; c— Friedel oscillations.
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ever, not been fully investigated; for many purposes a Morse potential
is often used for metallic interactions.

Finally, for materials like diamond or germanium, where bonding is
by covalent forces, we recognize that we no longer deal with simple
central potentials but rather with interactions involving strong three-
body correlation effects. Such potentials are usefully pictured in
terms of naive tetrahedral bonds; but, while this is of great importance
and good validity for constructing interface models, it helps little if we
wish to evaluate interface energy. We shall leave such classes of
substance out of our present discussion.

B. A Variational Formulation

The only attempt at a general variational treatment of crystal inter-
faces seems to be that of Fletcher and Adamson(31) and, because it
yields results closely related to our present discussion, we shall treat
it in some detail. The method is essentially that outlined above, the
two crystals being treated as elastic continua, except for atoms near the
interface; instead of dealing directly with the displacements of individ-
ual atoms as variational parameters, however, the whole operation is
carried out in reciprocal space, with important simplifications.

Consider the potential V, experienced by a B atom just outside the
plane surface of a crystal of A atoms located at positions R. If the
interaction potential between individual atoms is v,p(7), then

V() = % vap (Ir—R|) = % v(r—R) (35)
where we shall now keep to the simplified notation at the right. This
potential can be written as a Fourier series

Vo) = g Vo exp(ik-1r) (36)
where the Fourier components Vy(k) are given by
Vok) = % v(k) exp (—ik - R) 37)

and v(k) is the transform of the interatomic potential v(r).

If the B atom is a member of a whole crystal with lattice positions
R’, then the total interaction energy across the interface is, by Eqgs.
(36) and (37),

E,= ER‘. ViR = %) % % v(k) exp [ik - (R'—R)] (3%
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Now we know that a sum like 2 exp (ik - R), taken over an infinite
crystal, vanishes unless k is a vector of the reciprocal lattice of that
crystal. The sums over R and R’ in Eq. (38) are only over semi-
infinite crystals but the component sums parallel to the interface are
fully infinite. The sum over R, R’ in Eq. (38) thus vanishes except for
values of k such that the component of k parallel to the interface is
equal to a projection of a reciprocal lattice vector of both crystals upon
this interface. Expressing this differently, the only Fourier compon-
ents contributing to the energy are those belonging to the projections
onto the interface of the coincidence lattice points of the reciprocal
lattices of the two crystals. There are various phase factors involved
in Eq. (38), representing the three degrees of translational freedom of
one crystal relative to the other. When the energy has been mini-
mized with respect to these parameters (which have no effect upon the
reciprocal lattices) then it will be large and negative if there is a high
density of coincidence reciprocal lattice points in space. Furthermore,
the R, R’ sums in the directional normal to the interface, while not giv-
ing delta function behavior, do have a maximum when the component
of k normal to the interface vanishes. Thus the interface of lowest
energy will be that oriented so as to pass through a maximum density
of coincidence reciprocal lattice points.

It is immediately apparent that these statements are simply the duals,
expressed in terms of reciprocal lattices, of the coincidence boundary
criteria discussed before. In the present form they have the advantage,
through Eq. (38), of giving an explicit value for the boundary energy
before any elastic distortions are included.

Now we must allow for the possibility of elastic relaxation of atomic
positions near the interface. To do this, let the A atom at R movetoa
new position R-+F(R) where the displacement F(R) is given by the
Fourier series

FR) = ; F exp (iK-R) (39)

and the Fy are now the Fourier coefficients of the displacement. The
atoms of crystal B are similarly displaced from R’ to R'"+F'(R’). The
displacements F'(R’) are given by a series similar to Eq. (39). So far
this is quite general, but we must now make a junction with the rest of
each crystal, represented by an elastic continuum, across the interface.
To do this, we relate the displacements of Eq. (39) to elastic distortions
in the continua through the stress function (16) and, to match the two
crystals across the interface, require that the stress components as-
sociated with Fg and Fy for the same K must balance.
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Returning to Eq. (39), we note that the existence of a coincidence
lattice between the two crystals may impose limitations upon the
values of K that occur, since, in terms of our previous discussion, there
must be displacement nodes at all points of the O-lattice. It is the
pattern on the interface plane that is important here and we can see
that, if there exists in this plane a two-dimensional coincidence lattice
between the direct lattices of the two crystals, then the only K values
which can occur are those belonging to the two-dimensional reciprocal
of this coincidence lattice. Except for boundaries with a high degree
of coincidence, the mesh of this superlattice will be very small and K
will approximate a continuous variable, though its magnitude is limited
because of the general limitation of meaningful magnitude for crystal-
line wave vectors.

When the displacements of Eq. (39) are included in the energy
expression (38), together with the contribution from elastic strain
energy in the bulk crystals, the expression becomes much more com-
plicated. Fuller details are given by Fletcher and Adamson(31), but
the leading terms have the form

E =~ 2 v(k) exp (ik - d) IKIJO(Zk -Fy)

k

J1(2k - Fx)
{ kg8kg+zfo(2k E )akg8g Kg}

+3 0 K|E, |? (40)
K

where g is a reciprocal lattice vector of the surface of crystal A and g’
of crystal B, the J, are Bessel functions, and 7, is the elastic modulus
given by Eq. (3). Here d is a small vector representing the displace-
ment of the origin of one crystal relative to that of the other. Briefly,
the first term 8, , 8, , represents the undistorted energy Eo, modified by
the Debye-Waller-like distortion factor I1J,. The. second term rep-
resents a coupling between nearly coincident reciprocal lattice points
g and g’ by the distortion component K and gives an energy contribu-
tion nearly linear in Fx. The final term takes account of the elastic
energy stored as distortions in the crystals. There are higher terms
representing compound coupling between g and g, involving several
different K, which have been omitted.

It is easy to see that the minimization of Eq (40) with respect to the
F, leads to cusped minima about the coincidence boundary configura-
tions. Consider the case in which g and g’ are nearly equal. Then,
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keeping only leading terms in the expansion of the Bessel functions, )
(40) becomes
E ~ const+2v(g) g - F +7,K|F |? “4n

which, when minimized by varying F, gives
E ~ const—1?g?/1, K 42)

This form is not, of course, valid as K — 0, for then the approximations
used in Eq. (41) fail, but the sharp minimum at K = 0, corresponding
tog=g',is evident. A more detailed analysis is required to elucidate
the -0 In 6 form of the cusp.

It is useful to note that, in this formulation, there is no difficulty in
treating the dislocation core, since atomic positions and interactions
are considered explicitly. It is also possible to extend the formalism
easily, so that several atomic layers on either side of the interface are
treated explicitly.

The important thing arising from this approach is, however, the
ability to make quantitative estimates of interface energies and energy
cusp depths based on realistic interaction potentials. The depth of
any cusp is determined by the value of the sum involving just the first
term of Eq. (40), the coincidence term g=g’. Its maximum value,
ignoring the I1J, term that is somewhat less than unity, is

bE~ 2 v@exple d <3 |o@)l 43)

where the sum is over just the reciprocal lattice coincidence sites
g =g’ on the boundary. Since v(k) generally decreases as k increases,
it is evident that boundaries with g =g’ for small g have prominent
cusps. Equation (43) yields the interesting conclusion that the mag-
nitude of particular cusps depends quite largely upon the form of the
potential, and particular cusps may be completely absent in some
cases. This conclusion was reached for the one-dimensional case
that we discussed before on the basis of an analysis by Fletcher (21),
but we now see its greater generality. Itis an effect not comprehended
in simple hierarchical dislocation models.

No explicit calculations for real materials have yet been made,
using this formalism. Fletcher (32); however, has published cal-
culations based on a simple interatomic potential, chosen so as to
minimize the computation time required, while at the same time rep-
resenting a reasonable approximation to reality. The case treated was
that of a twist boundary on a (100) plane between two face-centered
cubic crystals of lattice parameters a, and a,. There is, as expected,
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a deeply cusped minimum at a, =a,, # =0, and a much shallower
minimum at ‘a1=\/2a2, 6 =45°. No other minima are apparent,
but this may be because of the particular form of potential chosen.

It is worth commenting upon some further features of the present
approach. Like all methods based upon coincidence lattices and
proceeding with sufficient rigor, it takes automatic account of crystal
symmetry and has no failure at large angles. This is of quite funda-
mental importance. The treatment is, however, limited, in its present
form, to the treatment of plane boundaries. Within this limitation it
is able to deal satisfactorily with a wide variety of cases such as the
epitaxial growth of a metal upon an ionic crystal, to yield both useful
general results and specific calculations for particular cases. For
large-angle grain boundaries in homogeneous materials, however,
where the boundary is likely to be closely terraced, a still more gen-
eral formalism is required.

Vi. CONCLUSION

The models of crystal interfaces that we have discussed are rather
varied; we hope, however, that the close interrelations between them
have been made clear. All the features have observational significance
under different conditions —dislocations can be seen in several ways
and periodic elastic distortions show up in some diffraction experi-
ments —but they are all manifestations of the same basic structural
relations.

We have not attempted to give such experimental evidence here or to
comment on the significance of the structures observed for other
aspects of interface behavior. We have scarcely referred to experi-
mental determinations of grain boundary energy. All of these are of
importance, but a discussion of them has been sacrificed in the interests
of unity of treatment. It is hoped that, by reconciling and unifying a
number of the important approaches to interface theory at present in
use, a clearer background will evolve against which to examine more
complex phenomena.
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