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Abstract. Much can be learnt about a system by studying how its various 
transfer functions vary with frequency. The best measured signal-to-noise ratio 
(SNR), and hence the most precise results, will occur when a sequence of stimuli, 
each containing only a single frequency, is applied to the system. However, it is 
often advantageous to shorten the total measurement time, with a consequent 
decrease in the measured SNR, by applying a stimulus that simultaneously 
contains several different frequency components. This paper considers the various 
compromises between the measured SNR and the frequency components that 
are simultaneously present. It concentrates upon improvements in the measured 
S N R  that result from optimum phasing of the harmonic components. Calculations 
show that the S N R  of a system with a transfer function that is substantially 
independent of frequency can thus be improved by a factor of approximately k0,4, 
where k denotes the number of frequencies that are simultaneously present. The 
measured S N R  will thus van/ aDproximatelv as k-o.6 if oDtimum waveforms are . .. 
used. 

1. Introduction 

Transfer functions (the ratio of a response to a stimulus) 
provide a useful method of characterizing linear systems 
(namely those for which a response is proportional 
to the stimulus). Many experiments involve studying 
how the transfer functions of a system vary with 
frequency. Because any measuring device will have a 
finite resolution, the best signal-to-noise ratio (SNR), 
and hence the most precise measurement, will occur 
when a stimulus at a single frequency is applied to 
the system. The value of the transfer function is then 
measured separately for each frequency. This approach 
also maximizes the time taken to measure the frequency- 
dependence. 

The total measurement time can be shortened, 
however, with a consequent decrease in the measured 
SNR, by applying a stimulus that simultaneously 
contains several different frequencies. Common stimuli 
with multiple frequency components include square 
waves, saw-tooth waves, triangular waves and random 
'noise' signals. 

Most experiments now involve a digital approach 
in which a computer both generates the stimulus via a 
digital-to-analogue converter (DAC) and measures the 
response via an analogue-to-digital converter (ADC) 
(Bell er a1 1975). Like any other kansducers or 
measuring devices, the ADC and DAC will each have a 
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fixed resolution within a restricted range. Consequently 
the addition of each extra frequency component to the 
stimulus must reduce the maximum relative amplitude 
of other frequency components present in the response. 
The SNR of each component will thus he decreased as 
the number of components increases. 

This paper considers how experiments that measure 
transfer funciions can he optimized by considering 
various compromises between the number of harmonic 
frequency components that are simulianeously present 
in the stimulus and the SNR of each component 
in the response. In particular it quantifies the 
improvement in SNR that can result from optimal 
phasing of the harmonic components in the stimulus 
and the selection of their relative frequencies. Although 
originally developed for four-terminal measurements 
of the electrical admittance of electrolytemembrane 
systems at low frequencies, ihe technique is applicable 
to a wide variety of systems. 

2. Theory 

A stimulus VS composed of k harmonic components of 
a fundamental frequency will have the form 

' 
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where Asj and @sj denote the amplitudes and phases 
respectively of the j t h  component of angular frequency 
njwo and nj are positive integers. xs denotes the noise 
in the stimulus that arises from the conversion noise of 
the DAC and any interference. The measured response 
VR in a linear system will thus be of the form 

k 

VRO) = A R ~  sin(n,wot +hi) + X R ~ )  (2) 

where A R ~  and @R, denote the amplitudes and phases 
respectively of the j t h  component of the response 
and X R  denotes the noise in the response. This 
noise will be larger than xs because of noise from 
several additional sources including the experimental 
system itself, interference, amplification processes and 
the conversion noise of the ADC. 

The treatment in this paper is restricted to situations 
in which the amplitudes of the components in the 
stimulus and response have reached a steady state. 
The relationship between stimulus and response depends 
upon the frequency-dependence of the transfer function. 
For a linear system the complex transfer function for the 
j t h  component can be written as 

j=1 

where i denotes J- 1. Comparison between experiments 
and theoretical models will generally require similar 
SNRs at each frequency. The relative amplitudes As, in 
tbe stimulus required in order to produce the best overall 
SNR will then depend not only upon the frequency- 
dependence of the particular transfer function under 
study, but also upon the characteristics of the noise in 
the stimulus and response. 

2.1. lkansfer functions that are substantially 
independent of frequency 

If the transfer function does not depend strongly on 
frequency, then any difference in phase between the 
stimulus and response would be expected to be small 
for most situations. Consequently the stimulus and 
response will have similar waveforms, and improving 
the SNR of the stimulus will also improve the S N R  of 
the response. It is then convenient to use a stimulus 
with equal amplitudes of each components; the variation 
of the SNR of the response with frequency will then 
be similar to that of the transfer function if the noise is 
independent of frequency. Equation (1) then reduces to 

where the amplitudes As, have been set equal to a 
common value denoted by As. For simplicity the 
contribution of xs has been neglected. The magnitude 
of VS should be as large as possible without exceeding 
the range of the ADC, denoted by &AM,  otherwise 
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conversion errors will result. The amplitude of each 
component should thus be limited to As < A M / k  i f  the 
phases are not considered. This worst-case value of As 
will be denoted by Aw. 

However, As can be increased if the relative phases 
of the individual components can be adjusted so that 
the maxima of some components partially overlap with 
the minima of others. Optimum phasing can thus 
increase As to a value AB, and consequently increase 
the measured SNR, by a factor denoted by cr. This 
improvement factor a in the measured SNR produced 
by optimum phasing is defined by the equation 

maximum amolitude with ootimum ohases -~ 
maximum amplitude with worst phases 

(5) 

The SNR of the response will be inferior to that of the 
stimulus and consequently it should be optimized at the 
expense of the SNR of the stimulus. If substantial phase 
differences occur in the transfer function, then i t  will be 
necessary to allow for these in generating the stimulus 
to ensure that the response has the optimal waveform. 

2.2. Transfer functions that depend strongly upon 
frequency 
Optimizing the SNR of the response is difficult in these 
situations because neither the stimulus nor the response 
will then have the optimal waveform. Calculating the 
stimulus requires consideration of the magnitudes of both 
xs and XR, as well as the complex frequency-dependence 
of the transfer function. Most of the power is often 
contained in only a few components, so the possibility 
of large improvements in SNR is reduced. 

3. Calculations 

In an experiment the stimulus would normally be 
generated by cyclically stepping through a table 
containing N values. Some possibilities are discussed 
by Smith and Sandler (1995). There are then Nck-]) 
possible phases for combining k harmonic components. 
The calculation procedure involved setting the amplitude 
of each component to a value denoted by A". VS was 
then calculated for each of the N points in the table 
using equation (4) and the maximum absolute value of 
VS in the table, denoted by VA, was determined for each 
unique combination of phases for the k components. The 
smallest value found for VA was then used to calculate 
a using a = Ao/VA.  The speed of the calculation was 
increased by using 16-bit integer arithmetic and look- 
up tables. A particular combination of k components is 
indicated using the notation [nl, n2,.  . . , nk]. For k > 
6 there were usually too many possible combinations 
of phases to calculate Vs for every possibility. The 
approach then involved selecting the phase at random 
and calculating VA as described above. This was 
repeated p times and an estimate of a, denoted by 
a', was then calculated from the smallest value of V,. 
Because this approach only considers a sub-set of the 
possible phase combinations, a' < a. 

AB kAB 
Aw A M '  
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Waveforms that produce optimum signal-to-noise 

Table 1. Optimum phases for adding two 
harmonic components of equal amplitude. 

1 2 0 1.136 
1 3 0 1.299 
1 5 3.1416 1.102 

1 2  3 4 5 6 7 8 9 10 

Frequency Ratio 

Figure 1. The variation of a, the increase in measured 
SNR produced by optimum phasing, when two harmonic 
components of equal amplitude are combined. a is shown 
as  a function of n2/n1, the ratio of their frequencies. 
Calculations assumed equal amplitudes with N = 2048. 

4. Results 

Results are only presented for waveforms with com- 
ponents of equal amplitude; these would be suitable 
stimuli for systems with transfer functions that do not 
vary strongly with frequency. The calculations involved 
are computationally intensive, for example, there are 
232 possible phases to consider for each combination 
in table 4. Consequently phases for the best comhina- 
tions are tabulated for each value of k; this allows ex- 
perimenters to produce optimum phasing without further 
intensive calculation. 

4.1. Improvements in SNR for stimuli with six or 
less components 

Figure 1 shows how a varies when two harmonic 
components of equal amplitude are combined. Maxima 
occur when their frequency ratio nz/n l  is the ratio of 
two simple integers, the best combinations in order of 
decreasing 01 being [1,31, [1,21, [1,51, [3,51, L1.71, 
[2,3], [3,7] and [1,4]. Table 1 indicates that an increase 
in S N R  of up to 30% is possible for the combination 
[1,3]. Further increases in the frequency of the 
higher harmonic reduce the chance of a suitable overlap 
between the minima and maxima of the two components, 
and consequently reduce the possible improvement in 
a when their relative phase is varied. This will 
become significant for the entire waveform when the 
components are reasonably close in frequency. The 
fastest measurements require that only one cycle of 
the lowest frequency be measured. Consequently the 
treatment in this paper will be restricted to the case 
n,  = 1. 

Table 2 shows that suitable phasing can further 
increase the SNR when a third component is present, 
the improvement in S N R  now exceeding 72% for 
the combination [1,3,5]. Improvements in the SNR 
produced by phasing become increasingly significant as 
k, the number of components, increases. Table 3 shows 
that the combinations [1,2,3,4], [1,3,5,7], [1,3,5,9] 

calculated assuming that $l. = 0 and 
N = 1024. 

nl n2 $2 a 

Table 2. Optimum phases for adding three harmonic 
components of equal amplitude, caliulated assuming that 
$1 = 0 and N = 1024. 

1 2 3  1.2885 5.2892 1.515 
1 2 4 1.5217 1.5953. 1.483 
1 2 5 0.11045 0.28839 1.445 
1 3 5 3.792 4.0804 1.725 
1 3 7 0.45406 0.71177 1.548 

Table 3. Optimum phases for adding four harmonic 
components of equal amplitude, calculated assuming that 
$,=Oand N=512. 

n2 n3 n4 $2 $3 $4 a 

1 2 3 4 0.2454 2.1353 6 3 7 8  1.959 
1 2 3 5 0.0491 4.4547 5.6573 1.821 
1 3 5 7 1.3622 3.4484 2.3930 1.952 
1 3 5 9 5.7064 1.1536 6.2096 1.954 
1 3 7 9 2.5035 5.6819 5.4487 1.946 

and [1,3,7,9] can produce values of a = 1.95. Further 
improvements in a fork = 5 and 6 are evident in tables 4 
and 5 respectively. These stimuli with optimum phasing 
have unusual waveforms, but are simple to synthesize 
using digital techniques. Figure 2 shows the waveforms 
for the combination [1,2,3,4,5,6] with phases that 
produced the worst SNR (that is the lowest a) and the 
best SNR (the highest a) for these six components. 

4.2. The best combinations of frequencies 

In many experiments it is only necessary to measure 
the frequency-dependence of the appropriate transfer 
function, the exact frequencies being unimportant 
provided that they provide suf6cient resolution. It is 
thus important to know whether certain combinations 
of components will always produce high values of a. 
As an example figure 3 shows the values of 01 for all 
possible combinations of six harmonic components with 
nj ranging from 1 to 9. No obvious panem is evident 
in these data apart from a tendency for a to decrease 
as the frequency range of the combined components 
increases. It is apparent, however, that optimum phasing 
can produce significant improvements (01 > 2.05) for 
any combination of frequencies within this range. 
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Table 4. Optimum phases for adding five harmonic components of equal amplitude, calculated assuming that 
4, = 0 and N = 256. 

1 2 3 4 5 0.49087 1.03084 4.90874 1.22718 2.124 
1 2 3 4 6 1.27627 0.71 177 3.5343 2.35619 2.100 
1 2 3 5 8 0.7854 4.9087 4.9333 5.4978 1.986 

Table 5. Optimum phases for adding six harmonic components of equal amplitude, calculated assuming that 
$, = O  and N =64. 

1 2 3 4 5 6  1.1964 5.1051 5.1051 1.5708 5.3014 2.316 
1 2 3 4 5 7  1.1781 1.1781 5.4978 2.6507 1.8653 2.320 
1 2 3 4 6 7  1.3745 4.5160 1.1781 2.7489 2.2580 2.339 
1 2 3 5 6 8  1.3745 4.8106 4.4179 3.9270 5.4978 2.347 
1 2 3 5 7 8  0.9817 0.9817 5.8905 3.3379 0.7854 2.360 
1 2 3 6 7 9  1.3745 1.6690 1.7672 4.9087 3.8288 2.324 

Figure 2. One complete cycle of two stimuli each 
containing six harmonic components with unity amplitude 
in the combination [1,2,3,4,5,6]. In (a) is shown the 
combination of phases that produce the worst possible 
SNR with maximum amplitude equal to 6.  In (6) is 
shown the combination of phases that produces the best 
possible S N R  with maximum amplitude equal to 2.5906. 
Consequently CY = 6/2.5906 = 2.31 6. 

Some particular combinations of frequencies can 
speed analysis, for example the combinations [l,  2, 
4,...,Zk-'] allow use of a simplified version of the 
Goertzel algorithm (Smith and Sandler 1995). However, 
when k 3 the frequency of additional components is 
sufficiently large to limit the potential improvement in 
SNR. For example a = 1.136, 1.483, 1.62 and 1.688 for 
k = 2, 3, 4 and 5 respectively. 

4.3. Stimuli vlith six or more components 

The large number of possibilities for k > 6 with any 
realistic value of N make it impossible to examine 
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Figure 3. The variation of E ,  the increase in measured 
SNR produced by optimum phasing, for every combination 
of six harmonic components of equal amplitude with 
1 < q < 9. Permuations are arranged in increasing 
order, that is [ 1,2,3,4,5,61 at the far-left hand side and 
[1,5,6,7,8,9] at the far right-hand side. Calculations used 

all possible phasings. One approach is simply to pick 
phases at random. The best result from p trials, denoted 
by a', can then be used as an estimate of a. Thc 
suitability of this approach was exhaustively tested for 
k = 6, for which the result was calculated for all possible 
phases. The results are shown in figure 4 in which a' is 
plotted against p ,  the number of trials used to produce 
that value. It is evident that a set of phases that produce 
a reasonably close estimate of the best value for a can be 
found by sampling only a small sub-set ol  the possible 
phases. This random sampling approach was used to 
investigate a for values of k > 6. 

N = 64. 

4.4. The variation of a with k 

Figure 5 shows the dependence of a' upon k ,  the 
number of harmonic components, estimated using 
random sampling, Combinations tested had the form 
[ l ,  2 , 3 , .  . . , k]. The relationship between a and k was 
described reasonably well by the function a = k0.4. The 
measured SNR will thus vary approximately as k-o.6 if 
optimum waveforms are used. 



Waveforms that produce optimum signal-to-noise 

Table 6. A compar:son of the tractional reduction in SNR and total time when measurements 
of k components are taken simultaneously rather than seqJentially. Calculations were for tne  
combinations [l. 2,.  . . , k]. 

k 

2 3 4 5 6 

Reduction in time 0.667 0.545 0.48 0.438 0.408 
Reduction in S N R  0.568 0.505 0.49 0.425 0.386 

1 102 i o 4  106 
Number of trials 

Figure 4. Variations in a', the estimated increase in 
SNR, for repeated estimates with different values of 
p !  the number of trials with randomly selected phases. 
Calculations were for the combination [l ,2,3,4,5,6] 
with N = 1024 (a = 2.316 when all possible phase 
combinations for N = 64 are considered). 

4.5. Compromises between SNR and total 
measurement time 

An important consideration is how much time is saved 
when stimuli with simultaneous components are used. 
Consider combinations of the form [I ,  n2, . . . , nt]. The 
measurement time for k simultaneous components will 
be shorter than that for k sequential components by a 
factor given by 1/(1 + n;] + . . . + n;'). 

Table 6 shows the fractional decrease in measure- 
ment time for stimuli containing k simultaneous com- 
ponents with combinations of the form [l, 2. . . . , k] and 
also shows the concomitant decrease in SNR (= a / k ) .  
For k =- 2 the decrease in measurement time is simi- 
lar to the decrease in SNR. (The measurement time for 
simultaneous components will be even shorter than that 
for sequential components when the time taken for the 
response to reach a steady state is considered.) 

5. Discussion 

The results show that optimum phasing can significantly 
improve the SNR for simultaneous measurements 
at multiple harmonic frequencies when the transfer 
functions are relatively independent of frequency. In 
most cases these improvements can be made simply by 
programming changes. The waveforms so generated 
are superior to square or saw-tooth waves, for which 
the amplitude of components decreases inversely with 
frequency. 

For waveforms with less than seven components 
(k < 7) it is simple just to use the phases given in 

3 10 30 100 300 
Number of components 

Figure 5. The dependence of CY', the estimated increase in 
SNR, upon the number of harmonic components k. Each 
point was calculated for the combination [l, 2,3,. . . , k ]  
using lo4 trials with N = 1024. The full line shows the 
relationship a = k0.4. 

tables 1-5. Although these have been calculated for the 
largest values of N that were computationally realistic, 
calculations indicate that neither the optimum phases nor 
OL depend significantly upon N when N is sufficiently 
large. Random trials of phases will probably be required 
for waveforms with additional components (k > 6). 
Random trials also allow the relative amplitudes of 
components to he varied during an experiment if the 
transfer function varies with frequency (Wolfe et a1 
1995). 

5.1. Advantages 
There are several situations in which simultaneous 
measurement at several frequencies can be advantageous. 
These include the following. 

(i) Situations in which the maximum possible 
precision of the apparatus is not required. 

(iij Experimental systems involving measurements 
at very low frequencies (of the order of millihertz). 
Some examples include measurements of the electrical 
conductances of glasses, electrolytes or artificial lipid 
bilayers. The time taken to examine individually several 
very low frequencies can become inordinately long 
because at least one complete cycle of responses is 
required at each frequency to determine the in- and out- 
of-phase components. 

(iii) Studies of unstable systems with a short life 
or transient states. For example, a major problem with 
studies of lipid bilayers is that they have unpredictable 
lifetimes ranging between minutes and days. It is thus 
best to measure their frequency-dependence as rapidly 
as possible, even if the SNR ratio suffers. 
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(iv) Systems with properties that drift or vary with 
time. 

5.2. Limitations 

One limitation of using stimuli with multiple harmonic 
components is that any nonlinearity in the system 
under investigation will produce additional harmonics 
of each component in the stimulus. Many of these 
additional harmonics will be at the same frequency as 
the original components; their contribution will thus 
be indistinguishable in the response and the precision 
of measurements will be reduced. This can be tested 
by injecting only the fundamental and measuring the 
amplitude of the harmonics. Nonlinearities can also 
produce components at frequencies equal to the sum and 
difference of components in the stimulus. 
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