
 

 

 

 
  1 

MODELLING THE SPECTRAL EVOLUTION OF TRANSIENTS 
IN WIND INSTRUMENTS  
André Almeida, Weicong Li, John Smith and Joe Wolfe 
Acoustics Laboratory, School of Physics, UNSW, Sydney, NSW, Australia 
email: a.almeida@unsw.edu.au 

Notes produced by self-sustained musical wind instruments are characterised by relatively long 
stretches of sound where the waveform has limited variation.  However, for notes begun by 
tonguing, the initial transient or attack is characterised by a rapid, nearly exponential rise in the 
amplitude of the pressure oscillations. In recent articles, we have studied and modelled tonguing in 
the clarinet, played by human or machine players. Here, the initial displacement of the reed creates 
a pressure pulse with a mechanism rather like that of the 'water hammer' in hydraulics, giving 
pressure and flow proportional to aperture—until the first reflection returns from the bore. 
Superposition of the reed effect and the reflection makes the spectral content of the early transient 
strongly dependent on details of the reed motion and the extent of overlap with the returning 
reflection. The feedback gain of the reed then produces an exponential rise in amplitude until 
saturation is approached. The shape and characteristic times of the sound envelope are modelled as 
a function of the details of how the opening valve is changed during the initiation of the sound. 
During the attack, the oscillations change not only in amplitude but also in shape, and the gain and 
rise times for different harmonics and other partials may vary. This paper investigates how the time 
course of the initial displacement of the reed produces different initial wave shapes, and how the 
spectral content is shaped by reed motion and its overlap with returning pulses from the resonator.  
Keywords: transients, reed instruments, time-varying spectrum, clarinet, articulation 

1. Introduction 
The initial transient or attack of a musical note is very important to timbre and instrument 

identification [1,2]. On wind instruments, the tonguing that starts a note is considered very important in 
good playing. 

Notes produced by tonguing on a clarinet start as a small oscillation that grows more or less rapidly 
to a quasi-stable oscillation. When played by a mechanical player, the steady-state limit oscillation is 
quite stable. The growth of the oscillation is, at the beginning, very close to exponential. The current 
team has shown experimentally that, for a given reed and note, the exponential rise rate (or the time 
constant in the exponential) is dependent on the blowing pressure and lip force applied by the player to 
the reed [3]. A simple model of the reed and its operating gain can show why this is so [3].  

In an experimental study using a mechanical player, the starting amplitude of a tongued oscillation 
was linked to the reed motion following tongue release. When released, the reed moves rapidly towards 
mechanical equilibrium, losing its mechanical energy in damping from the lip. Its motion gives a rapid 
change in reed aperture, which allows a rapid change in air flow into the bore of the instrument [4]. 
Before the arrival of the first wave reflected at the other end of the bore, the amplitude of this change in 
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pressure and flow is, in the simple theory, proportional to the change in reed opening. Often, however, 
the initial reed motion is not complete before the reflected pulse returns. In this case, the variation in 
pressure and flow due to reed motion overlaps with that due to the reflected pulse [4]. Different time-
variations of reed opening thus produce different starting wave shapes, often different from the time-
variation of the reed opening because of overlaps with the reflected pulse. This is shown in figure 1. 
 

 
Figure 1. Reed-wave interactions modelled for a simplified clarinet-like instrument. The ratio 𝛽 = 𝑡$/𝑡&, where 
𝑡$ is the duration of the initial reed motion and 𝑡& the round-trip time in the tube. Here 𝛽 varies from 2 (top row) 

to 0.4 (bottom). (Reproduced with permission from [4]) 
 

Figure 1 also shows that the different extents of overlap give rise to different amplitudes of the 
starting wave and also different starting waveforms for the oscillation. Different initial waveforms 
mean different spectral composition. Further, in a real instrument, the partials at different frequencies 
have different growth rates, for instance because of frequency-dependent losses in the bore. The 
combination of different starting amplitudes at different frequencies and different growth rates means 
that different initial reed motions can produce considerable variation in the starting transient. Such 
differences are expected to be perceptually very important to the overall perception of the note [1, 2].  

This paper analyses the evolution of each partial in the initial transient, first in a simplified clarinet-
like system, mechanically played, and later in a slightly modified clarinet played by real musicians. In 
both cases, a heterodyne method is used to determine time-evolution of each partial (described in 
section 2). We then apply this model to mechanically played simple clarinets (section 3) showing that 
the model parameters can be easily described. In section 4, the same method is applied to signals 
played by real musicians in real clarinets, and the two cases are compared.   

2. Simplistic model: simple overlap 
Following [4], we start by considering a resonator that produces just a simple delay, linear 

amplification by the reed and superposition of reflected waves. With this simple model, we predict the 
waveform generated by a few simple initial perturbations. As can be guessed from the example in 
figure 1, any abrupt perturbation in pressure and flow would give rise to an approximately square wave, 
which has significant power at higher harmonics, especially odd ones. For successively slower rates of 
rise, keeping the same time-variation profile, the waveform comes to resemble a triangular wave, 
which has less power in high harmonics. 
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This effect can be displayed graphically using a Fourier analysis of one of the periods of the 
waveform after a few reflections. The relative amplitudes of the first 5 harmonics are shown in figure 
2, taken a few periods into the oscillation. Relative amplitude values remain constant in this simple 
simulation, because the growth rate is the same at all frequencies. The x axis is the ratio 𝛽 = 𝑡$/𝑡&, 
where 𝑡$ is the time taken for the initial reed displacement and 𝑡& is the round-trip time for a wave in 
the pipe, which equals half a period for oscillations in this open-closed pipe. (𝛽=1 corresponds to a reed 
motion that stops just as the first reflection arrives.) 

 
Figure 2. Amplitudes of harmonics as a function of 𝛽 = 𝑡𝑟/𝑡& for parabolic perturbations with different 

durations. From the top, the graphs show harmonics 1, 3, 5, 2, 4. 
 

For different perturbation shapes, we expect the harmonic content to have different dependence on 
𝛽. Figure 3 shows how the ratio of the third harmonic to the fundamental changes for 4 different 
profiles. All profiles start off with the same ratio -9.54 dB (1/3), which is the ratio for a square wave. 

 
 

Figure 3. Ratio of harmonic amplitudes 𝐻)/𝐻* as a function of 𝛽 for perturbations with four different shapes of 
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Are similar patterns observed in real conditions? This is the object of section 4. The next section 

introduces the experimental methods used for the measurements shown in that section.  
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3. Materials and methods 
The data shown in this article were acquired in previous studies [3,5], and are analysed here with 

new methods. The apparatus used for data acquisitions is briefly described in the following two 
subsections, followed by the analysis method that is new to the present paper.  

3.1 Mechanical playing device 
The data described in section 4 were acquired using a mechanical playing device [3], whose basic 

operation resembles that of a clarinet. A clarinet mouthpiece is mounted at one end of a straight 
cylindrical tube. Tubes of different lengths were used, one much longer than a clarinet to minimise 
overlap of reflections with the perturbation generated at the reed. The other end seals to large chamber, 
allowing a radiation boundary condition. The chamber is pumped to a pressure below atmospheric to 
create a positive blowing pressure across the reed in the usual direction. The exposed mouthpiece 
allows easier control of the lip and tongue actions.  

The lip force is provided by a constant mass that hangs from the upwards-facing reed. The force is 
distributed over an area comparable with that of a real lip by means of a soft pad of Sorbothane.  

The tip of the tongue is simulated by a thinner pad on the tip of a lever. To start a note with varied 
acceleration in the size of the aperture, the operator presses the opposite side of the lever either with 
another mass or his finger. Tongue and reed motion are recorded using a high-speed camera, and 
automatic image analysis retraces the reed position (y) vs time (t). This curve is used to check that the 
motion is an approximately parabolic increase in time, and to calculate the average acceleration of the 
reed.  

Instrument bore pressure shown in figures below is measured in the barrel of the instrument, 7 cm 
downstream of the reed. (This position reduces turbulence at the microphone.) 

3.2 Sensor-fitted clarinet 
Human-played data are acquired on a real clarinet, where the barrel is replaced by a cylinder of 

equivalent length and diameter, which allows fitting a microphone with negligible intrusion in the 
musician’s gesture. A small pressure sensor is also fitted to the clarinet mouthpiece; this is almost 
imperceptible to the musician. Data from this sensor are not used in the current article. 

Six musicians played a series of exercises, from which only the isolated notes with different attack 
indications were used in the present study.   

3.3 Estimation of partial amplitudes 
The analysis of partial amplitude is performed on the microphone signals (sampled at 50 kHz) using 

the method of heterodyne detection: 
The original signal is multiplied by a complex exponential at a constant frequency, matching the 

frequency of the partial under study. This signal is the summed using windows of 1024 samples, 
multiplied by a Hann window: this was the window length that produced minimal ripple while 
conserving a reasonable transient time. Slopes of more than 40000 dB/s cannot be detected using this 
method, because the size of the window will smooth out the steep slope. Such quick transient times 
usually arise for partials above the 3rd harmonic in the human data). 

If the frequency of the partial is constant within a band of 50000/1024 = 50 Hz, then the absolute 
value of the sum for each window is proportional to the average amplitude of the partial over the 
window, and the complex angle of the sum corresponds to the average of the phase difference relative 
to the reference signal over the window.  
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4. Mechanically played transients (long pipe) 
In a recent article [4], the authors were able to control the release of the reed in a simplified clarinet-

like instrument described in the previous section. The reed opening followed an approximately 
parabolic profile. This generated a parabolic increase in the reed aperture, until it opened to its 
equilibrium position, or until the first reflection returned. A slight overshoot was sometimes observed 
but this decayed rapidly due to the high damping of the lip on the reed. The pressure perturbation could 
be observed most clearly in long pipes, where the first reflection occurred much later than the duration 
of the initial reed motion. Because of the ‘water hammer’ effect discussed above, its time course was 
similar to that of the reed opening—a parabolic profile (see figure 4).  

In that article, the observations showed that, if the reed opening happens slowly so that the reflected 
pulse overlaps the initial perturbation, the initial amplitude of the exponentially growing envelope of 
the pressure oscillation became smaller, because of that negative superposition (see figure 1). 

The same measurements can be analysed in terms of spectral composition, showing patterns that 
share features with those shown in section 2. 

4.1 Observations 
 

 
Figure 4. Transients on a long, cylindrical, ‘clarinet’ for perturbations of different duration 

 
Figure 4 shows the first 3 tenths of seconds of the oscillation in a cylindrical resonator of total 

length 0.89 m driven by a clarinet reed and mouthpiece. The oscillation is triggered by the mechanical 
tongue at 4 different values of the acceleration: respectively 23.5, 14.7, 3.2 and 0.9 mm ⋅ s/.. The 
insets show the first 1/100th of second, as measured by the barrel pressure sensor—roughly the first 
oscillation. The second row of plots shows the amplitude of the first five harmonics (blue is the 
fundamental, then orange, green, red and purple). The third row shows the ratio between the third 
harmonic and the fundamental (𝐻)/𝐻*). 

4.2 Discussion 
Figure 4 shows that the initial ratio of 3rd harmonic to fundamental (at t=0) decreases as the value of 

𝛽 = 𝑡$/𝑡& increases from left to right. The difference is not as dramatic as predicted, however.  
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Additionally, the figure also shows that the increase in the amplitude of the fundamental is very 
close to exponential for the first several oscillations, after which the signal starts to saturate. Saturation 
corresponds to a regime where the amplifying effect of the reed can no longer be considered linear. 
Approaching saturation, the amplification of the first harmonic is reduced, while the amplitudes of the 
third and fifth harmonics rapidly increase, because of the non-linearity (clipping). This corresponds to 
the time where the green and the purple curves (3rd and 5th harmonics) undergo a sharp increase in 
slope. The slower rise in the 3rd and higher harmonics during the exponential phase is partly due to 
visco-thermal losses in the bore, which increase in proportion with 8𝑓. Higher frequencies are also 
expected to have a lower reed gain, because the model for reed gain neglects the mass of the reed, 
whose influence is greater at higher frequencies. 

In Figure 4, the fall then rise in the third partial in the two left columns at about 0.15 s is an 
interesting feature. As can be seen from the insets, the tiny initial pressure perturbation has a waveform 
shape determined by the opening motion of the reed, which also determines its relative phase with the 
fundamental. . During the regime of linear reed gain (the first stage in the attack), the fundamental and 
third partial are in linear superposition (no phase locking), and the frequency of the latter is slightly less 
than three times the fundamental, so the phase difference increases gradually and their amplitudes also 
evolve independently of each other, being determined by the amplification rate of the exciter (see Fig. 
5). Later in the attack of the note, the fundamental starts to saturate, generating higher harmonics with 
phases that are locked to the phase of the fundamental. If and when the 3rd partial of the linear phase is 
in opposition to the phase-locked 3rd harmonic, an interference minimum occurs, and is followed by the 
regime with rapidly growing third harmonic. 

 
Figure 5. Evolution of amplitude and phase of harmonics relative to the fundamental phase. Notice the steady 

increase in the phase of H3 and H5 
 

These do not exhibit the bifurcation delays observed by Bergeot [6] for the case of a pressure rising 
from zero. In such a case the perturbation is the smooth increase in pressure, and the oscillation 
generated by it first undergoes a reduction in amplitude before the blowing pressure reaches the 
oscillation threshold. In the normal tongued attack, the blowing pressure is usually above the oscillation 
threshold when the tongue is released, so that it grows immediately from the initial perturbation caused 
by the quickly varying reed motion. 

 

5. Human played transients 
For real musicians playing real instruments, 𝛽 = 𝑡$/𝑡&  is usually rather greater than one, partly 

because the lip slows the reed motion (𝑡$ large) and the pitch is usually higher (𝑡& small), whereas the 
simplest results in the previous section are for	𝛽 ≿ 1.   For experienced players, it is thus rare to see 
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transients that include significant power in higher harmonics in the early exponential stage. More often, 
we only see the higher harmonics appearing when the saturation of the oscillation begins (see for 
instance figure 6 which shows a normal articulation played by an experienced musician). 

Notice also that the increases of the first and higher harmonics are not so exactly exponential. This 
is likely to be due to time variation, during the attack, of the blowing pressure [5], the force applied to 
the reed or possibly even the vocal tract configuration. 
 

 
Figure 6. (left) An experienced player plays (written) C5 with a “normal” articulation. Figure 7. (right) The same 

player plays C5 sforzando 
 

In some cases, higher partials may even briefly exceed the power of the fundamental, as seen for 
instance in a sforzando attack by the same player. (Compare figures 6 and 7). 

More often, and especially for less experienced players, oscillations at resonant modes of the 
instrument appear in the initial transient. For a note in the clarion register, the resonances are not 
harmonically related, as they would be in a straight cylindrical resonator. An example is shown in 
figure 8, where the fundamental is at 467 Hz and the two lines for 764 and 1238 Hz show significant 
level in the first 300 ms, then disappear as the main oscillation approaches saturation, and thus 
produces the 3rd harmonic at 1410 Hz. This is also seen in figure 7 to a smaller extent, due to the 
shorter duration of the attack. 
 

 
 

Figure 8. An intermediate player plays C5 with “normal” articulation, showing inharmonic partials in the 
transient. 
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6. Conclusions 
An attack transient from silence begins when the tongue releases the reed, whose motion changes the 
aperture into the instrument producing, at first, proportional changes in flow and pressure. This 
determines the pressure variation waveform until the first reflection arrives. Thereafter, superposition 
produces quite complicated waveforms.  

Previous works form the authors showed that the time course of the initial reed motion produces a 
proportional pressure perturbation, and that the fundamental component of the oscillation produced by 
this perturbation then rises exponentially until saturation. This article shows that the envelope of 
individual partials of the perturbation can be isolated from each other. For most of the transient, 
approximately linear gain from the reed (which must more than compensate for losses in the bore) 
produces an exponential rise in each of the partials until the fundamental approaches saturation. In 
general, higher partials produced in the early stage of the transient do not rise as quickly as the 
fundamental, and sometimes fall during the transient, until saturation produces rapid rises in the 
harmonics. Harmonics produced by non-linear saturation can interfere with partials from the initial 
perturbation producing dips in their amplitudes within the note attack. The spectral content in the early 
part of the transient is not always harmonic and is a strong function of the time-course of reed 
movement following tongue release. In some cases, partials unrelated to the harmonics of the played 
note can be initially excited and undergo some growth until the main oscillation is well established. 
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