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ABSTRACT 
Playing a musical instrument to convey a convincing and 
engaging performance requires mastering several musical 
and technical aspects of playing the instrument. Timing 
and loudness of notes are recognised as important compo-
nents of conveying musical expression, but also important 
are finer aspects such as the timbre of notes, how rapidly a 
note starts as well as fine variations of loudness and pitch 
within the note. An expert musician acquires a subtle con-
trol (often subconscious) of the gestures needed to produce 
these sound results, but they are usually difficult to observe 
or communicate. This presentation introduces the MIP-
CAT, a hardware and software toolbox that can be used to 
record simultaneously the sound and the action of a musi-
cian: the variables that directly affect the sound such as (in 
the example of a reed instrument) blowing pressure and 
bite force, but also body gestures or mouth-mouthpiece ge-
ometry, captured via general-purpose cameras. The 
toolbox also facilitates data processing and analysis in a 
semi-automatic way. To demonstrate the potential use of 
the MIPCAT in pedagogy, we show measurements of the 
gestures of a beginner clarinettist in comparison with those 
of a panel of expert players.  

1. INTRODUCTION 
 
Western music performance traditions involve more than 
just converting musical notation (the ‘score’) to a series of 
note pitches and durations. The score can include what is 
called expressive indications, telling the musician how 
loud to play, how loudness should change in a particular 
stretch of the score, or how the duration of the tone should 
change relative to the indication given by the note figure 
in the score. 

All this information printed in the musical score still 
leaves a margin of liberty of individual expressiveness to 
the musician. In some instruments, this liberty is limited to 
slight changes in the duration and timing of the note: for 
example, in baroque keyboard instruments such as the or-
gan or the harpsichord, expressiveness is mostly a fine art 
of adjusting the durations of a note to the musical context 

inside a phrase or within the piece, or varying the relative 
start times of notes in a chord (written as simultaneous). In 
a piano, the range of available parameters increases, as the 
loudness can also be changed, or the ringing of the notes 
with the sustain pedal. In many instruments, such as most 
of the winds, the range of parameters is greatly increased 
because the control by the musician for each note is ex-
erted throughout the duration of the note, allowing for 
changes of the note envelope, multiple aspects of its tim-
bre, and slight modifications of the pitch.  

In the clarinet, for example, two important parameters 
are blowing pressure and reed bite force. Not all possible 
values can be used for these two parameters: there is a lim-
ited range that allows for the production of a periodic tone. 
Within this range, only a smaller range has “aesthetically 
suitable” applications and an even smaller range will be 
used by a particular player, in a particular musical context.  

To play a tune requires a player to negotiate a path 
through a limited volume of the space of control parame-
ters so that the notes sound, the slurs are smooth and the 
timbre homogeneous. This was the object of a challenge 
that our team participated in, successfully providing a 
mapping between player parameters and musical pitches 
so that a robot musician could play most of the range of 
the clarinet, for real musical pieces (http://www.phys.
unsw.edu.au/jw/clarinetrobot.html). 

On the other hand, using a fixed pair of values for a given 
note results in a rather mechanical performance. Expres-
sivity and “humanness” are achieved by exploring the 
range of aesthetically sound parameters in a performance. 
Musicians practice for years in order to acquire an intuitive 
sense of the right chaining of parameters in a note, in a 
phrase and an entire musical piece. 

Several authors have focused on the slight variations in 
the characteristics of the sound, in particular tempo and 
loudness, either due to some implicit rules given the struc-
ture of the score, to convey some kind of emotional inten-
tion by the performer, or just to personalize the rendition 
of a musical piece. Timing and loudness aspects have been 
covered widely in the literature [6]–[8], presumably be-
cause those are aspects that are common to many instru-
ments. Other aspects such as intonation and timbre varia-
tions have also been studied, although less frequently [9]. 
Much less focus has been given to how the adjustments to 
the sound results are achieved by musicians, but see work 
from the Vienna group [10].  

Relatively little is known about the reasons behind the 
set of parameters chosen by a musician to play a particular 
note with a particular sound result: Is this an individual 
choice and can different player parameters be used to 
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achieve similar sound results? Does this choice depend on 
the musical context or the expressive intention? Can the 
knowledge of possible parameters be used to teach how to 
play a musical instrument? Musicians can describe the ac-
tions they need to undertake to modify the emotion con-
veyed by a performance [11], but how do these intentions 
correlate with their actual, physical actions?  

Some authors have incorporated sensors in musical in-
struments to study musical interpretation in physical terms 
[12]–[15].  

The present work aims to provide a comprehensive and 
cost-effective way of acquiring and pre-processing the 
main musical and player parameters involved in the per-
formance of a musical instrument. It is an extension of a 
reviewed article published recently [16]. In that paper, we 
foresaw applications in pedagogy. In this paper, we use the 
toolbox to compare measurements made on a beginner 
clarinettist with a collection of measurements made on ex-
perienced professionals. 

The toolbox is here applied to the clarinet, but with some 
effort, it could be adapted to other wind instruments. For 
other families of instruments, such as bowed strings, for 
instance, some of the software tools may be applied and 
the automated tracking of ArUco tags could also be 
adapted to the motion of the bow. Different sensors would 
be used, for example force sensors in the bridge and bow 
and accelerometers in the latter. 
 

2. THE MIPCAT 

2.1 Hardware 

The capture system of the Music Instrument Performance 
Capture and Analysis Toolbox (MIPCAT) consists of sev-
eral sensors fitted to a clarinet mouthpiece (Figure 1), two 
microphones capturing the external sound, and three cam-
eras. 

The sensors were: 
- A tonguing sensor consisting of a small wire glued 

onto a Légère reed. A second wire was connected to 
the thumb rest on the clarinet so that when the tongue 
touched the wire, an imperceptible electric current (of 
a few µA) would flow through the body of the musi-
cian; 

- An optical sensor measuring the distance between the 
mouthpiece and the reed, by sensing differences in 
reflected infrared light on the reed; 

- A miniature pressure sensor measuring pressure (DC 
and AC) inside the mouth of the musician; 

- A second miniature sensor measuring the DC and AC 
pressure inside the mouthpiece; 

- A B&K microphone measuring AC pressure fluctua-
tions inside the barrel. 

Apart from the B&K microphones and the external audio 
microphone, all the sensors were plugged into a custom-
built conditioning system, whose schematics can be found 
with the software package. All of the electronics, including 
proprietary apparatus, the acquisition system and the lap-
top were powered by a 12V car battery, to ensure the elec-
trical safety of the musician and experimenter.  

Of the two external microphones, an audio microphone 
was placed on a stand about 50 cm from the player. A sec-
ond microphone was a B&K measurement microphone at-
tached to the lower part of the instrument, below the right 
hand. 

Two cameras captured a front and a right-hand side view 
of the clarinet player and the instrument (Figure 2). Four 
ArUco tags (QR-code style markers [17]) were attached to 
the clarinet. These are easy to detect with image-pro-
cessing tools. A third miniature camera was attached to the 
barrel of the instrument and captured a side view of the 
mouthpiece and the player’s mouth (Figure 3). With a col-
oured tag and a scale glued to the mouthpiece, this allowed 
the position of the lips along the mouthpiece of the instru-
ment to be measured.  

The hardware components are specific to the clarinet, but 
with small modifications, the sensors could be adapted to 
other single-reed instruments such as a saxophone. Dou-
ble-reeds or flutes would require greater modifications, but 
solutions have been found to measure mouth pressure in 
flutes [13] or brass instruments [18], [19].  
 

 

Figure 1. The sensor-fitted mouthpiece used in the 
MIPCAT (from [16]) 

 

Figure 2. One of the authors demonstrating the use 
of the sensor-fitted clarinet, and the use of ArUco 
markers for clarinet position tracking (from [16]). 
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Figure 3. The mouthpiece fitted with a coloured 
scale used for tracking the lip position on the 
mouthpiece (from [16]). 

2.2 Software 

A software package, mostly written in Python, is publicly 
provided to pre-process and analyse these data and compa-
rable sets. This package is available on GitHub at 
https://github.com/goiosunsw/mipcat. There are several 
components to this package: 

2.2.1 Video to Audio Alignment 
This module calculates the delay between a reference sig-
nal, for instance, that of the external microphone, to the 
audio track associated with a recorded video. The align-
ment is based on a fingerprinting algorithm [20] that ex-
tracts relative peak positions in each of the signal’s spec-
trograms.  

2.2.2 Time-series Indicators 
This module analyses the recorded data in frames, and cal-
culates some indicators, in particular: 

- DC offset: the mean value of the measured signal 
within that window; 

- Amplitude: the RMS amplitude of the oscillation of 
the measured data; 

- Frequency: the fundamental frequency of the oscilla-
tion in the measured signal; 

- Harmonic components: amplitudes of five harmonics 
of the fundamental frequency. 

The signal input to these analysers is first pre-processed to 
take into account any calibration needed by the signal. This 
and other signal properties are defined in a YAML file.  

2.2.3 Segmentation and Alignment with the Musical Score 
This module takes as input an audio recording of a perfor-
mance (sometimes repeated several times) and a music 
score. Time instants in the audio signal are matched to note 
beginnings and endings. 

2.2.4 Mouthpiece Video Processing 
The scale glued onto the mouthpiece consists of a human-
readable millimetre scale alongside a green strip that is 
easy to detect and isolate digitally using open-CV. The po-
sition of the numbers in the human-readable scale is 
tracked using a template tracker (based on correlation) for 
two reasons: firstly, it allows calibrating for physical dis-
tances, secondly, it indicates where the green strip should 
be found, making it easier to discard false detections of the 
green patch.  

2.2.5 Clarinet Position Processing 
This module uses open-CV to detect the position of the 
clarinet markers (ArUCo) on the image. Open-CV pro-
vides a tag detector for individual frames. A second layer 
of detection is added, consisting of a template tracker: a 
snapshot of the tag found with the standard detector is kept 
in memory, and a correlation algorithm tracks its position 
in a new image. This allows tracking of the tags even when 
they are partly obscured or blurred by motion.   

2.2.6 Player Pose  
The player is tracked using a deep neural network algo-
rithm provided by Google and called Mediapipe. It can 
identify the position of key elements of the human body. 
Important for us are the position of the mouth and the head. 
This detection is not as accurate as the position of the clar-
inet based on the ArUco tags but can provide some rough 
indication, for example of the angle of the head.  

2.2.7 Signal Collection and Building of a Database 
Large volumes of data are generated by the descriptor ex-
traction. The data set is easier to analyse by aggregating it 
within individual notes and calculating statistical values 
such as means, standard deviations, etc.  

 

3. A WORKED EXAMPLE 

3.1 Introduction 

The primary purpose of the worked example was to use the 
MIPCAT system to demonstrate how player’s physical 
gestures in a study concerning expressive playing are cap-
tured and processed. Detailed results from this study will 
be published later. Here we give an example of how a set 
of recordings from expert musicians can be compared to 
the performance of a beginner, pinpointing when the main 
differences arise and suggesting actions that are closer to 
the expert’s technique. 

The musical excerpt used in this example is an eight-bar 
section introducing the main theme of the slow movement 
of Mozart’s Clarinet Concerto K. 622. Seven musicians 
were invited to participate in the study, 6 of them profes-
sionals playing in orchestras (used to obtain “reference ex-
pert performance”), and one beginner who has played 
other reed instruments for more than 30 years but never 
studied or regularly played the clarinet. They were in-
volved in a 3-hour-long session (with a 30-minute break) 
concerning the expression of emotion through music, and 
a set of other tasks related to musical performance. As part 
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of this study, they were asked to play the above-mentioned 
excerpt on the sensor-fitted clarinet (the lab clarinet) and 
also on their own clarinet.  

3.2 The Recording Stage 

The musicians sat in a low-reverberation room, as in Fig-
ure 2. They had some time to practise on the sensor-fitted 
instrument, and to select from a set of synthetic reeds ac-
cording to which felt more comfortable to them. They 
played the excerpt twice on the sensor-fitted instrument 
and were then asked to play it again on their own instru-
ment. If needed they could reject a recording and repeat it. 
An experimenter from the team provided guidance and 
launched the recording of the sensor data, together with 
each of the three cameras.  

3.3 Pre-processing and Segmentation of the Audio 

Once the data have been collected, the first step is to iden-
tify the individual notes, matching them to the score. This 
can be done manually with audio tagging software, but 
MIPCAT provides a set of tools that can help with this 
task.  

Initially, a series of descriptors are extracted from the au-
dio (Figure 4). Among these are the amplitude and fre-
quency of the sound, but many others are extracted also 
from the sensor recordings, to be used at a later stage. Ex-
traction of the descriptors can be performed automatically 
for a single recording or a set of recordings using the script 
“ts_gen_from_csv”. 

Amplitude and frequency from a reference channel (usu-
ally the internal instrument pressure if available, otherwise 
from one of the external microphones) are used to detect 
note transitions, in a first pass, and then to align these note 
transitions to the score. These two passes can be performed 
in a single step using the script “note_matcher”. Once 
again, the script can be run individually for one recording, 
or a set of recordings. The script outputs a TextGrid file 
per recording, and these files can be used in Praat 
(https://www.fon.hum.uva.nl/praat/) to check and adjust 
the segmentation. 

3.4 Pre-processing of Video Recordings  

MIPCAT provides a set of tools to help extract key posi-
tions in the video files. Some of these are specific to our 
project, but the ArUco tagging is quite generic and can be 
used in many different situations. The script that tracks the 
ArUco markers is more robust than the simple framewise 
detection of a tag, using information from previous frames 
to keep identifying the tag even if it is blurred by motion 
or partially obscured. Tracking can be performed with the 
script “aruco_tracker”. 

Tracking of human position can also be used in many 
different situations and is done in an automated way by the 
script “mp_pose_detect” which calls Mediapipe in an au-
tomated way and exports the data to be processed later. 
Finally, the mouthpiece video is specific to clarinets and 
saxophones. This stage has to be run for each video in two 
stages: first calling the GUI “mouthpiece_gui” to manually 
adjust key parameters for the automated processing, and 
creating a configuration file for each video.  

The tracking of the green patch that is partially and vari-
ably covered by the musician’s lips is then done automati-
cally with “mouthpiece_tracker”. 

3.5 Alignment of Video and Sensor Signals 

The cameras used in this project were not synchronised to 
the sensor and microphone signals, because cameras that 
provide a synchronization signal can be expensive. In-
stead, the audio that is recorded by each camera together 
with the video is synchronised offline using a fingerprint-
ing algorithm. This algorithm identifies key features in the 
spectrogram of each audio signal (camera and signal-syn-
chronous) and runs a matching algorithm to identify the 
delay between the two signals. This is done with the script 
“align_keypoints.py” 

Once the delays are known, the measurements extracted 
from the videos in the first step can be cut and aligned to 
the sensors so that they can be seamlessly analysed as the 
output of any other sensor.  

3.6 Collecting Data 

The data gathered with this system are quite comprehen-
sive, and can be analysed in different ways. For the pur-
pose of this worked example, we chose to aggregate signal 
data for each note, calculating average values, trends and 
variability measurements. For example, for the measured 
mouth pressure, many different indicators are calculated 
such as the average mouth pressure during a note, the 
standard deviation, the trend, the amplitude of the oscilla-
tion (since sound also propagates inside the mouth), etc.  

These calculations are run for all the notes in all the re-
cordings automatically with the script “build_note_data-
base”. 

4. RESULTS 
With the knowledge of the note boundaries for each per-
formance, it is possible to align different performances on 
a modified time scale that is measured in musical beats in-
stead of seconds. With this alignment, we can compare the 
descriptor time series for different players, as seen in Fig-
ure 4.
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Figure 4. An example capture of descriptor time series corresponding to 4 performances of 2 (expert) players. From 
top to bottom, the score (transposed for the instrument), the playing frequency, sound RMS amplitude, blowing 
pressure, normalized distance of the reed to the lay of the mouthpiece, angle of the clarinet and covered area of the 
mouthpiece (from [16]). The photographs provide two extreme examples of mouthpiece covering (bottom) and 
clarinet angle (on the right-hand side).

4.1 Note-by-note Analysis 

Instead of comparing “instantaneously” how a player is 
playing their instrument, we can analyse the performances 
in terms of averages of the descriptors within each note. In 
this way, it is possible, for example, to compare an indi-
vidual performance with an “average performance” of a 
larger set of musicians that participate in a study. (Detailed 
analysis of a larger set is a project of the present team). In 
the following plots, we show the “average expert perfor 
mance” in blue, calculated as the median value of a partic-
ular descriptor for each note, for all the 6 expert players, 
and for both the lab instrument and their own instrument, 
except when the data involves player parameters such as 

blowing pressure or reed position. Overlapped is the vari-
ability of the descriptor, measured as the inter-quartile 
range for each note. In red we display the performance of 
a beginner, to compare it to the “average expert perfor-
mance”. 

The first figure (Figure 5) shows the value of the note 
amplitude in a box plot without whiskers. The horizontal 
length of each box is the IOI for that note. Because each 
player can decide to play the excerpt with a different over-
all amplitude, the absolute amplitude for each note is sub-
tracted from the average amplitude for the entire excerpt 
by that player. It thus shows the amplitude of the note rel-
ative to all other notes. This typically reduces the overall 
variability of each note’s amplitude by 3 dB, i.e. instead of 
the amplitude of a typical note ranging from 97 to 102 dB 
(a range of 5 dB), the range is reduced to 2 dB.  
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Figure 5. Box plot showing average (horizontal 
lines) and inter-quartile variability (shaded areas) 
of the sound amplitude of expert performances 
(blue), per note of the excerpt, compared to an ex-
cerpt from the beginner (red). Amplitude is shown 
as a difference from the overall excerpt amplitude. 

The plot shows, for instance, that the beginner is exag-
gerating the dynamics at the beginning of the second 
phrase while not doing a large enough decrescendo to-
wards the ends of the 1st and 2nd phrases.  

Similarly, we can see in Figure 6 that the beginner is not 
coping well enough with the tuning in the higher notes. 
Notice that the variability in pitch across expert players is 
small in this plot.  

 

Figure 6. Average pitch of each note of the excerpt 
for expert musicians (blue) and a beginner (red). 
Unlike the other figures, the variability (inter-quar-
tile range) is not visible because it has typical mag-
nitude of a few cent (hundredths of a semitone). 

 
The plots in Figures 5 and 6 would be possible to obtain 

using only an audio recording. The sensors attached to the 
clarinet however make it possible to look into the actions 
of the musician that is producing these sound results. 
Figures 7 to 11 show how it could be possible to pinpoint 
technical problems from a beginner  

Figure 7 shows how the blowing pressure varies along 
the excerpt, for the “average expert” and for the beginner. 
For instance, the two high Cs immediately before and on 
the 9th beat, in the second phrase, were produced using 
considerably greater blowing pressure from the beginner 
(red dash) in comparison to the professional mean (blue). 

 

Figure 7. Average blowing pressure (blue) for ex-
pert musicians (per note) compared to a beginner’s 
performance (red)  

Another important parameter for clarinettists is the bite 
force applied to the reed. Our sensors do not measure force 
directly, instead measuring the reflectance of a light shin-
ing on the reed. This reflectance is a monotonic function 
of the distance, roughly linear in the range of interest. 
However, changing the reed, and to some extent changing 
the reed position on the lay may change the reflectance. 
For this reason, the data presented in  Figure 8 is a differ-
ence in the reed position for the note from the average po-
sition for all notes in the recording. In this figure, it is ap-
parent that the beginner changes the reed position more 
than the expert players.  

 

Figure 8. Average reed displacement from excerpt 
overall mean for expert musicians (blue) compared 
to a beginner (red).  

The mouthpiece camera measured the amount of mouth-
piece that is covered by the bite of the musician. It was 
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found that different musicians can use rather different bite 
positions (or configurations, since the covered part of the 
mouthpiece measured in the image might not correspond 
exactly to the bite position), but the position is, on average, 
only changed by a small amount during playing (Figure 9). 
 

 

Figure 9. Average mouthpiece length covered as 
measured from the tip of the mouthpiece, for each 
of the professional (numbers 4-9) and beginner 
(number 10) participants. 

Still, it is possible to observe a trend during an excerpt 
whereby the mouth slightly recedes from the mouthpiece 
in the first phrases (Figure 10). For the beginner the 
retraction is more pronounced towards the end of the 
excerpt. 

 

Figure 10. Difference between each note’s bite po-
sition to the overall average position for each 
player. Blue: expert musicians, red: beginner. 

The views of the player can be used to determine the clar-
inet's orientation relative to the musician's face. This is also 
a measure that can vary considerably among players as 
shown in Figure 11, not least because of physiological dif-
ferences that may not translate directly into a different ac-
tion on the instrument. It may also reflect different playing 
traditions and training. 

 

Figure 11. Average clarinet angle relative to for-
ward facing direction of head for each player (4-9: 
professionals, 10: beginner). Notice how players 6, 
8 and 10 move their instrument considerably more 
during the excerpt. 

5. DISCUSSION AND CONCLUSIONS 
Measurement systems for musical instruments and auto-
mated or semi-automated methods of processing data open 
new perspectives on how we teach and learn technical as-
pects of musical performance. Student performances can 
be compared to expert performances and technical styles 
can be compared. A range of other applications is foreseen 
in  seeking a deeper understanding of how the musician-
instrument combination works in vivo. 

In the present study, a pedagogical application was 
shown, that can describe the range of playing actions of 
expert performances, against which that the student perfor-
mances can be compared. This comparison goes beyond 
the simple auditory, interpretative level, but goes to the 
physical action level — the very act of playing. With some 
refinements, this has considerable applications for player 
training.  

The software used for this analysis is available with doc-
umentation on https://github.com/goiosunsw/mipcat, and 
a larger dataset of performances will be made available 
shortly. 
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