Lecture Units
The following
lecture units may be offered in 2010:

The
"core units" A  D are normally compulsory for all students.

Units
A, C and D will be given in Session 1 and unit B will
be given in Session 2.

Students
should take 2 elective units in addition to the 4 core
units. It is sometimes possible to substitute other
courses for some of those in the above list, for example
Honours units from other Schools. Advice should be sought from the
Undergraduate Director.

Writing
your Honours Theses:
The theses
will require a statement clearly stating what actual work
the student has performed. You are advised to discuss this
statement with your supervisor.
In marking
your report assessors will take into account the following
aspects:
 Literature review
 Understanding of
principles
 Clarity of expression
 Orderliness

Soundness
of arguments
 Techniques (experimental
and theoretical)
 Presentation of results

Suggestions
for further work, etc
See Writing
an Honours Thesis
for further guidelines.
Unit
A: QUANTUM MECHANICS See also Lecture
Notes
PART 1
1) Systems of identical particles, fermions and bosons. Pauli exclusion principle for fermions. Helium atom. Exchange interaction. Multielectron atoms and periodic table.
2) Diatomic molecules and molecular binding. Molecular orbitals. The simplest molecule H2+, BornOppenheimer approximation, electronic, vibrational and rotational spectra of diatomic molecules.
3) Charged particle in an external magnetic field. Gauge invariance. Landau levels.
4) Heisenberg formulation of quantum mechanics. Example: 1D harmonic oscillator, creation and annihilation operators.
PART 2
Relativistic equations: KleinGordon equation, Dirac equation.
Scattering Theory: Scattering amplitude, Born approximation, Lowenergy scattering, scattering phases, resonance scattering.
Unit
B: STATISTICAL MECHANICS
1. Interaction in classical fluids
Cluster expansions for an imperfect gas; the product theorem; Ursell cluster functions, articulation and nodal circles; introduction to theories of liquids; distribution functions; Orstein Zernike equations; the HNC and PY approximations; the virial expansion and equations of state; comparison with molecular dynamics simulations;
2. Phase Transitions and Critical Phenomena
Phenomenology of first order phase transitions; critical points and critical exponents; the Ising model and applications, approximate and exact solutions.
3. Approach to Equilibrium, Transport Phenomena, and Irreversibility
Brownian motion; Boltzmann transport equation, approximate solutions; the H theorem and the problem of irreversibility; Liouville equation, time correlation functions, Linear response theory; The fluctuation theorem.
Unit
C: SOLID STATE PHYSICS Lecture
Notes
1. Band
Theory
Electrons
in periodic solids; nearlyfreeelectron approximation;
tightbinding method,
selectrons
in cubic lattices; Density Functional approaches.
2. Electron
Dynamics
The Fermi
surface; effective mass; energy levels and orbits in a magnetic
field; cyclotron resonance; de Haasvan Alphen effect; examples
from real materials.
3. Fundamentals
of Magnetism:
Origins
of magnetism, Hund's rules; exchange interaction,
diamagnetism, paramagnetism, Curie law, molecular field,
CurieWeiss law
4.
Magnetic Structures
Magnetic ordering, ferromagnetism and antiferromagnetism;
anisotropy, domains, neutron scattering determination of
magnetic
structures.
Unit
D: ELECTROMAGNETISM and THE STANDARD MODEL
2003
Exam Questions
1. Electrodynamics
a. Relativistic notation, 4vectors,
2. Vector potential, tensor of EM field,
3. Gauge invariance,
4. Action of a particle in an EM field and action of an
EM field,
5. Lagrangian
6. Equations of motion – Maxwell’s equations,
and equation for a charged
particle (Examples: electron in static electric or/and
magnetic fields,
electron in an electromagnetic wave).
7. Liénard  Wiechert retarded potentials and fields,
8. Radiation from an accelerated particle:
a. synchrotron radiation, spectrum, polarization
and angular distribution
b. dipole radiation (reminder)
9. Scattering of EM waves
a. longwave limit
b. short wave limit
10. Dirac monopoles, quantization condition, dyons
Unit
E: ADVANCED CONDENSED MATTER PHYSICS
1. Semiconductors
Tunnelling
and barriers; low dimensional semiconductor systems; reduced
size and dimensionality effects; density of states; quantum
Hall effects; electronic transport in mesoscopic systems.
2. Superconductors
BCS theory:
GinzburgLandau theory; flux quantisation, vortices, TypeII
superconductors, Josephson effect; high temperature superconductivity
3. Magnetism
Spin
waves; low temperature thermodynamics of magnetic systems;
systems with RKKY interactions; mean field theory of itinerant
electron magnetism; incommensurability; frustration and
spin glasses.
Unit
F: These two courses are offered in alternate years
ASTROPHYSICS (offered in even years)
or
COSMOLOGY AND THE INTERSTELLAR MEDIUM (offered in odd years)
This course describes the observations and physics of the interstellar medium. We will look at the variety of phases in the interstellar medium and gain an understanding of the observations that reveal its structure. We will also investigate the physical processes that enable this multiphase structure to be maintained. This course explores the basics of modern cosmology. We will investigate some of the observations which have led to the construction of the Big Bang Theory of the evolution of the universe.
Unit
G: QUANTUM FIELD THEORY
The aim is to make Quantum Field Theory (QFT) clear, informative and interesting for all.
Speaking simply QFT is a branch of physics, which studies general properties, which describe the behaviour of Bose and Fermi particles in different situations. This means different types of interactions between them, different external conditions etc. The subject of QFT is diverse and the just given simple definition does not cover every aspect of it, but it suffices for our needs.
The purpose of this course is to provide an introduction to the subject in such a way that it can be useful and interesting for students who are going to pursue a career in any field of physics, for example in atomic physics, astrophysics, condense matter physics etc. For those few students who would intend to undertake research in high energy physics this course may serve as a first, preliminary encounter with their area of interests.
The subject is introduced by addressing several phenomena, including the following ones:

Casimir effect

Lamb shift  splitting of atomic energy levels, which from the first glance should be degenerate

Vacuum polarization

HeizenergEuler problem, behaviour of the vacuum in strong magnetic field

Schwinger phenomenon, production of electron  positron pairs in static electric field
Their general properties as well as relations with phenomena that take place at low energies (say, in atomic and condensed matter physics, or astrophysics) are outlined. The physical content is made the centre point of the discussion while the necessary theoretical formalism is reduced to the minimum and reformulated in most simple terms, which are accessible and, hopefully, attractive for any honours student.
Unit
H: Atomic
& Molecular Physics (not offered in 2010)
Atomic
Physics
Oneelectron
atoms (revision), multielectron atoms, atomic units.,
HartreeFock, self consistent field, Slater determinant,
atomic shells, relativistic effects, spinorbit interaction,
Hund's rule, electromagnetic transitions, selection rules,
atomic spectroscopy.
Diatomic
Molecules
BornOppenheimer
approximation, hydrogen molecule, valence bond treatment
of hydrogen molecule, Coulomb and exchange, spin, molecular
orbital treatment of H_{2}^{+}.
Polyatomic
Molecules
Molecular
symmetry, symmetry groups, matrix representations, symmetry
species, character tables, degeneracy, molecular orbitals,
buildup, LCAO's, polyatomic molecules, methods for calculating
molecular orbitals of polyatomic molecules, examples:
H_{2}O, N, practical methods, density functional
theory, electron correlation.
Molecular
Spectroscopy
Energies,
selection rules, electronic transitions, molecular vibrations,
infrared, optical and Raman spectroscopy, examples.
Special
Topics
Some
applications of molecular physics. Depending on the lecturer
this might include macromolecules, polymers, biological
applications, atmospheric physics, remote sensing.
Further
Information
For more
information about the Honours Year contact:
